Massive missing data reconstruction in ocean buoys with evolutionary product unit neural networks
Tài liệu tham khảo
Abdella, M., Marwala, T., 2005. The use of genetic algorithms and neural networks to approximate missing data in database. In: IEEE 3rd International Conference on Computational Cybernetics, 2005, ICCC 2005, pp. 207–212.
Agrawal, 2002, On-line wave prediction, Marine Struct., 15, 57, 10.1016/S0951-8339(01)00014-4
Altunkaynak, 2013, Prediction of significant wave height using geno-multilayer perceptron, Ocean Eng., 58, 144, 10.1016/j.oceaneng.2012.08.005
Arena, 2004, The reconstruction of significant wave height time series by using a neural network approach, J. Offshore Mech. Arct. Eng., 126, 213, 10.1115/1.1782646
Arulampalam, 2003, A generalized feedforward neural network architecture for classification and regression, Neural Netw., 16, 561, 10.1016/S0893-6080(03)00116-3
Balas, 2004, Predictions of missing wave data by recurrent neuronets, J. Waterw. Port Coast. Ocean Eng., 130, 256, 10.1061/(ASCE)0733-950X(2004)130:5(256)
Bhattacharya, B., Shrestha, D., Solomatine, D., 2003. Neural networks in reconstructing missing wave data in sedimentation modeling. In: Proceedings of the 30th IAHR Congress, Thessaloniki, Greece Congress, pp. 24–29.
Camus, 2011, A hybrid efficient method to downscale wave climate to coastal areas, Coast. Eng., 58, 851, 10.1016/j.coastaleng.2011.05.007
Casas-Prat, 2014, A physical-based statistical method for modeling ocean wave heights, Ocean Model., 73, 59, 10.1016/j.ocemod.2013.10.008
Denison, 2002
Durbin, 1989, Product units, Neural Comput., 1, 133, 10.1162/neco.1989.1.1.133
Fernández, J., Salcedo-Sanz, S., Gutierrez, P., Alexandre-Cortizo, E., Hervás, C., Significant wave height and energy flux range forecast with machine learning classifiers. Eng. Appl. Artif. Intell. 2015, 43, 44 53, 10.1016/j.engappai.2015.03.012, http://www.sciencedirect.com/science/article/pii/S0952197615000640
Fernández-Navarro, 2011, Evolutionary q-Gaussian radial basis function neural networks for multiclassification, Neural Netw., 24, 779, 10.1016/j.neunet.2011.03.014
Gunaydin, 2008, The estimation of monthly mean significant wave heights by using artificial neural network and regression methods, Ocean Eng., 35, 1406, 10.1016/j.oceaneng.2008.07.008
Gutiérrez, 2009, Combined projection and kernel basis functions for classification in evolutionary neural networks, Neurocomputing, 72, 2731, 10.1016/j.neucom.2008.09.020
Haykin, 1998
Hervás-Martínez, 2007, Combining classification and regression approaches for the quantification of highly overlapping capillary electrophoresis peaks by using evolutionary sigmoidal and product unit neural networks, J. Chemom., 21, 567, 10.1002/cem.1082
Hervás-Martínez, 2007, Logistic regression using covariates obtained by product-unit neural network models, Pattern Recognit., 40, 52, 10.1016/j.patcog.2006.06.003
Ho, 2005, A study of the data transferability between two wave-measuring stations, Coast. Eng., 52, 313, 10.1016/j.coastaleng.2004.12.003
〈http://www.ndbc.noaa.gov〉, 2015. National Buoy Data Center. National Oceanic and Atmospheric Administration of the USA, NOAA.
Ismail, A., Engelbrecht, A., 2000. Global optimization algorithms for training product unit neural networks. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000, IJCNN 2000, vol. 1, pp. 132–137.
Jang, 1993, Anfis, IEEE Trans. Syst. Man Cybern., 23, 665, 10.1109/21.256541
Janson, 1993, Training product unit neural networks with genetic algorithms, IEEE Expert, 8, 26, 10.1109/64.236478
Kalra, 2007, Genetic programming for retrieving missing information in wave records along the west coast of India, Appl. Ocean Res., 29, 99, 10.1016/j.apor.2007.11.002
Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.
Lee, 2002, An art-based construction of rbf networks, IEEE Trans. Neural Netw., 13, 1308, 10.1109/TNN.2002.804308
Leerink, L.R., Giles, C.L., Horne, B.G., Jabri, M.A., 1995. Learning with products units. In: Advances in Neural Networks Processing Systems, vol. 7, pp. 537–544.
Liu, 2014, Comparison of wave height interpolation with wavelet refined cubic spline and fractal methods, Ocean Eng., 87, 136, 10.1016/j.oceaneng.2014.05.013
Liu, 2015
Liu, 2005, Patterns of ocean current variability on the west Florida shelf using the self-organizing map, J. Geophys. Res., 110, C06003
Londhe, 2008, Soft computing approach for real-time estimation of missing wave heights, Ocean Eng., 35, 1080, 10.1016/j.oceaneng.2008.05.003
Londhe, 2007, Correlation of wave data from buoy networks, Estuar. Coast. Shelf Sci., 74, 481, 10.1016/j.ecss.2007.05.003
López, 2013, Review of wave energy technologies and the necessary power-equipment, Renew. Sustain. Energy Rev., 27, 413, 10.1016/j.rser.2013.07.009
Mahjoobi, 2008, Hindcasting of wave parameters using different soft computing methods, Appl. Ocean Res., 30, 28, 10.1016/j.apor.2008.03.002
Mahjoobi, 2009, Prediction of significant wave height using regressive support vector machines, Ocean Eng., 36, 339, 10.1016/j.oceaneng.2009.01.001
Malekmohamadi, 2008, Wave hindcasting by coupling numerical model and artificial neural networks, Ocean Eng., 35, 417, 10.1016/j.oceaneng.2007.09.003
Martínez-Estudillo, 2005, Hybridization of evolutionary algorithms and local search by means of a clustering method, IEEE Tran. Syst. Man Cybern. Part B: Cybern., 36, 534
Martínez-Estudillo, 2006, Evolutionary product unit based neural networks for regression, Neural Netw., 19, 477, 10.1016/j.neunet.2005.11.001
Martínez-Estudillo, 2008, Evolutionary product-unit neural networks classifiers, Neurocomputing, 72, 548, 10.1016/j.neucom.2007.11.019
Medina, 2004, Interpolation of time series of sea state variables using neural networks, Coast. Eng., 78, 985
Nelwamondo, 2007, Missing data, Curr. Sci., 93, 1514
Nitsure, 2012, Wave forecasts using wind information and genetic programming, Ocean Eng., 54, 61, 10.1016/j.oceaneng.2012.07.017
Özger, 2009, Neuro-fuzzy approach for the spatial estimation of ocean wave characteristics, Adv. Eng. Softw., 40, 759, 10.1016/j.advengsoft.2009.02.004
Paulhus, 1952, Interpolation of missing precipitation records, Mon. Weather Rev., 80, 129, 10.1175/1520-0493(1952)080<0129:IOMPR>2.0.CO;2
Rao, 2005, Hindcasting of storm waves using neural networks, Ocean Eng., 32, 667, 10.1016/j.oceaneng.2004.09.003
Schmitt, 2002, On the complexity of computing and learning with multiplicative neural networks, Neural Comput., 14, 241, 10.1162/08997660252741121
Setiawan, N., Venkatachalam, P., Hani, A., 2008. Missing attribute value prediction based on artificial neural network and rough set theory. In: International Conference on BioMedical Engineering and Informatics, 2008, BMEI 2008, vol. 1, pp. 306–310.
Soares, 2000, Bivariate autoregressive models for the time series of significant wave height and mean period, Coast. Eng., 40, 297, 10.1016/S0378-3839(00)00015-6
Sturges, 1983, On interpolating gappy records for time-series analysis, J. Geophys. Res.: Oceans, 88, 9736, 10.1029/JC088iC14p09736
Thompson, 1971, Spectral estimation from irregularly spaced data, IEEE Trans. Geosci. Electron., 9, 107, 10.1109/TGE.1971.271476
Thomson, 2014
Tomandl, 2001, A modified general regression neural network (mgrnn) with new, efficient training algorithms as a robust “black box”-tool for data analysis, Neural Netw., 14, 1023, 10.1016/S0893-6080(01)00051-X
Tsai, 2002, Neural network for wave forecasting among multi-stations, Ocean Eng., 29, 1683, 10.1016/S0029-8018(01)00112-3
Ustoorikar, 2008, Filling up gaps in wave data with genetic programming, Marine Struct., 21, 177, 10.1016/j.marstruc.2007.12.001
Zamani, 2008, Learning from data for wind-wave forecasting, Ocean Eng., 35, 953, 10.1016/j.oceaneng.2008.03.007