Massive missing data reconstruction in ocean buoys with evolutionary product unit neural networks

Ocean Engineering - Tập 117 - Trang 292-301 - 2016
A.M. Durán-Rosal1, C. Hervás-Martínez1, A.J. Tallón-Ballesteros2, A.C. Martínez-Estudillo3, S. Salcedo-Sanz4
1Department of Computer Science and Numerical Analysis, Universidad de Córdoba, Rabanales Campus, 14071 Córdoba, Spain
2Department of Languages and Computer Systems, Universidad de Sevilla, 41012 Seville, Spain
3Department of Management and Quantitative Methods, Universidad Loyola Andalucía, 41014 Seville, Spain
4Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain

Tài liệu tham khảo

Abdella, M., Marwala, T., 2005. The use of genetic algorithms and neural networks to approximate missing data in database. In: IEEE 3rd International Conference on Computational Cybernetics, 2005, ICCC 2005, pp. 207–212. Agrawal, 2002, On-line wave prediction, Marine Struct., 15, 57, 10.1016/S0951-8339(01)00014-4 Altunkaynak, 2013, Prediction of significant wave height using geno-multilayer perceptron, Ocean Eng., 58, 144, 10.1016/j.oceaneng.2012.08.005 Arena, 2004, The reconstruction of significant wave height time series by using a neural network approach, J. Offshore Mech. Arct. Eng., 126, 213, 10.1115/1.1782646 Arulampalam, 2003, A generalized feedforward neural network architecture for classification and regression, Neural Netw., 16, 561, 10.1016/S0893-6080(03)00116-3 Balas, 2004, Predictions of missing wave data by recurrent neuronets, J. Waterw. Port Coast. Ocean Eng., 130, 256, 10.1061/(ASCE)0733-950X(2004)130:5(256) Bhattacharya, B., Shrestha, D., Solomatine, D., 2003. Neural networks in reconstructing missing wave data in sedimentation modeling. In: Proceedings of the 30th IAHR Congress, Thessaloniki, Greece Congress, pp. 24–29. Camus, 2011, A hybrid efficient method to downscale wave climate to coastal areas, Coast. Eng., 58, 851, 10.1016/j.coastaleng.2011.05.007 Casas-Prat, 2014, A physical-based statistical method for modeling ocean wave heights, Ocean Model., 73, 59, 10.1016/j.ocemod.2013.10.008 Denison, 2002 Durbin, 1989, Product units, Neural Comput., 1, 133, 10.1162/neco.1989.1.1.133 Fernández, J., Salcedo-Sanz, S., Gutierrez, P., Alexandre-Cortizo, E., Hervás, C., Significant wave height and energy flux range forecast with machine learning classifiers. Eng. Appl. Artif. Intell. 2015, 43, 44 53, 10.1016/j.engappai.2015.03.012, http://www.sciencedirect.com/science/article/pii/S0952197615000640 Fernández-Navarro, 2011, Evolutionary q-Gaussian radial basis function neural networks for multiclassification, Neural Netw., 24, 779, 10.1016/j.neunet.2011.03.014 Gunaydin, 2008, The estimation of monthly mean significant wave heights by using artificial neural network and regression methods, Ocean Eng., 35, 1406, 10.1016/j.oceaneng.2008.07.008 Gutiérrez, 2009, Combined projection and kernel basis functions for classification in evolutionary neural networks, Neurocomputing, 72, 2731, 10.1016/j.neucom.2008.09.020 Haykin, 1998 Hervás-Martínez, 2007, Combining classification and regression approaches for the quantification of highly overlapping capillary electrophoresis peaks by using evolutionary sigmoidal and product unit neural networks, J. Chemom., 21, 567, 10.1002/cem.1082 Hervás-Martínez, 2007, Logistic regression using covariates obtained by product-unit neural network models, Pattern Recognit., 40, 52, 10.1016/j.patcog.2006.06.003 Ho, 2005, A study of the data transferability between two wave-measuring stations, Coast. Eng., 52, 313, 10.1016/j.coastaleng.2004.12.003 〈http://www.ndbc.noaa.gov〉, 2015. National Buoy Data Center. National Oceanic and Atmospheric Administration of the USA, NOAA. Ismail, A., Engelbrecht, A., 2000. Global optimization algorithms for training product unit neural networks. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000, IJCNN 2000, vol. 1, pp. 132–137. Jang, 1993, Anfis, IEEE Trans. Syst. Man Cybern., 23, 665, 10.1109/21.256541 Janson, 1993, Training product unit neural networks with genetic algorithms, IEEE Expert, 8, 26, 10.1109/64.236478 Kalra, 2007, Genetic programming for retrieving missing information in wave records along the west coast of India, Appl. Ocean Res., 29, 99, 10.1016/j.apor.2007.11.002 Koza, J.R., 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA. Lee, 2002, An art-based construction of rbf networks, IEEE Trans. Neural Netw., 13, 1308, 10.1109/TNN.2002.804308 Leerink, L.R., Giles, C.L., Horne, B.G., Jabri, M.A., 1995. Learning with products units. In: Advances in Neural Networks Processing Systems, vol. 7, pp. 537–544. Liu, 2014, Comparison of wave height interpolation with wavelet refined cubic spline and fractal methods, Ocean Eng., 87, 136, 10.1016/j.oceaneng.2014.05.013 Liu, 2015 Liu, 2005, Patterns of ocean current variability on the west Florida shelf using the self-organizing map, J. Geophys. Res., 110, C06003 Londhe, 2008, Soft computing approach for real-time estimation of missing wave heights, Ocean Eng., 35, 1080, 10.1016/j.oceaneng.2008.05.003 Londhe, 2007, Correlation of wave data from buoy networks, Estuar. Coast. Shelf Sci., 74, 481, 10.1016/j.ecss.2007.05.003 López, 2013, Review of wave energy technologies and the necessary power-equipment, Renew. Sustain. Energy Rev., 27, 413, 10.1016/j.rser.2013.07.009 Mahjoobi, 2008, Hindcasting of wave parameters using different soft computing methods, Appl. Ocean Res., 30, 28, 10.1016/j.apor.2008.03.002 Mahjoobi, 2009, Prediction of significant wave height using regressive support vector machines, Ocean Eng., 36, 339, 10.1016/j.oceaneng.2009.01.001 Malekmohamadi, 2008, Wave hindcasting by coupling numerical model and artificial neural networks, Ocean Eng., 35, 417, 10.1016/j.oceaneng.2007.09.003 Martínez-Estudillo, 2005, Hybridization of evolutionary algorithms and local search by means of a clustering method, IEEE Tran. Syst. Man Cybern. Part B: Cybern., 36, 534 Martínez-Estudillo, 2006, Evolutionary product unit based neural networks for regression, Neural Netw., 19, 477, 10.1016/j.neunet.2005.11.001 Martínez-Estudillo, 2008, Evolutionary product-unit neural networks classifiers, Neurocomputing, 72, 548, 10.1016/j.neucom.2007.11.019 Medina, 2004, Interpolation of time series of sea state variables using neural networks, Coast. Eng., 78, 985 Nelwamondo, 2007, Missing data, Curr. Sci., 93, 1514 Nitsure, 2012, Wave forecasts using wind information and genetic programming, Ocean Eng., 54, 61, 10.1016/j.oceaneng.2012.07.017 Özger, 2009, Neuro-fuzzy approach for the spatial estimation of ocean wave characteristics, Adv. Eng. Softw., 40, 759, 10.1016/j.advengsoft.2009.02.004 Paulhus, 1952, Interpolation of missing precipitation records, Mon. Weather Rev., 80, 129, 10.1175/1520-0493(1952)080<0129:IOMPR>2.0.CO;2 Rao, 2005, Hindcasting of storm waves using neural networks, Ocean Eng., 32, 667, 10.1016/j.oceaneng.2004.09.003 Schmitt, 2002, On the complexity of computing and learning with multiplicative neural networks, Neural Comput., 14, 241, 10.1162/08997660252741121 Setiawan, N., Venkatachalam, P., Hani, A., 2008. Missing attribute value prediction based on artificial neural network and rough set theory. In: International Conference on BioMedical Engineering and Informatics, 2008, BMEI 2008, vol. 1, pp. 306–310. Soares, 2000, Bivariate autoregressive models for the time series of significant wave height and mean period, Coast. Eng., 40, 297, 10.1016/S0378-3839(00)00015-6 Sturges, 1983, On interpolating gappy records for time-series analysis, J. Geophys. Res.: Oceans, 88, 9736, 10.1029/JC088iC14p09736 Thompson, 1971, Spectral estimation from irregularly spaced data, IEEE Trans. Geosci. Electron., 9, 107, 10.1109/TGE.1971.271476 Thomson, 2014 Tomandl, 2001, A modified general regression neural network (mgrnn) with new, efficient training algorithms as a robust “black box”-tool for data analysis, Neural Netw., 14, 1023, 10.1016/S0893-6080(01)00051-X Tsai, 2002, Neural network for wave forecasting among multi-stations, Ocean Eng., 29, 1683, 10.1016/S0029-8018(01)00112-3 Ustoorikar, 2008, Filling up gaps in wave data with genetic programming, Marine Struct., 21, 177, 10.1016/j.marstruc.2007.12.001 Zamani, 2008, Learning from data for wind-wave forecasting, Ocean Eng., 35, 953, 10.1016/j.oceaneng.2008.03.007