Massive gene decay in the leprosy bacillus

Nature - Tập 409 Số 6823 - Trang 1007-1011 - 2001
Stewart T. Cole1, Karin Eiglmeier1, Julian Parkhill2, Keith James2, Nicholas R. Thomson2, Paul R. Wheeler3, Nadine Honoré1, Thierry Garnier1, Carol Churcher2, David Harris2, Andrew J. Mungall2, D. Basham2, Daniel R. Brown2, Tracey Chillingworth2, R. Connor2, Robert M. Davies2, K. Devlin2, Stéphanie Duthoy1, Theresa Feltwell2, Arnaud Kerhornou2, N. Hamlin2, Simon Holroyd2, T. Hornsby2, Kay Jagels2, Céline Lacroix1, J. B. Maclean2, Sharon Moule2, Lee Murphy2, Karen Oliver2, Michael A. Quail2, Marie‐Adèle Rajandream2, Kim Rutherford2, Simon Rutter2, Kathy Seeger2, Sylvie Simon1, Mark Simmonds2, Jason Skelton2, Robert Squares2, S. Squares2, Kim Stevens2, K. Taylor2, Sally Whitehead2, John R. Woodward2, Bart Barrell2
1Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, 28 rue du Docteur Roux, Paris, Cedex 15 75724, France
2Sanger Centre, Wellcome Trust Genome Campus, Hinxton CB10, 1SA, UK
3Veterinary Laboratories Agency, Weybridge, Surrey, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Karonga Prevention Trial Group. Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi. Lancet 348, 17–24 (1996).

Nordeen, S. K. & Hombach, J. M. in Tropical Disease Research: Progress 1991-1992. Eleventh Programme Report of the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (eds Walgate, R. & Simpson, K.) 47–55 (World Health Organization, Geneva, 1993).

World Health Organization in WHO Weekly Epidemiological Record 73, 40 (1998).

Hansen, G. H. A. Undersogelser angaende spedalskhedens aasager. Norsk Magazin for Laegervidenskaben 4 (Suppl.), 1–88 (1874).

Kirchheimer, W. K. & Storrs, E. E. Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int. J. Lepr. 39, 693–702 (1971).

Franzblau, S. Drug susceptibility testing of Mycobacterium leprae in the BACTEC 460 system. Antimicrob. Agents Chemother. 33, 2115–2117 (1989).

Shephard, C. C. in Leprosy (ed. Hastings, R. C.) 269–286 (Churchill Livingstone, Edinburgh, 1985).

Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

Tekaia, F. et al. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tubercle Lung Disease 79, 329–342 (1999).

Brosch, R., Gordon, S. V., Eiglmeier, K., Garnier, T. & Cole, S. T. Comparative genomics of the leprosy and tubercle bacilli. Res. Microbiol. 151, 135–142 (2000).

Philipp, W., Schwartz, D. C., Telenti, A. & Cole, S. T. Mycobacterial genome structure. Electrophoresis 19, 573–576 (1998).

Stinear, T. P., Jenkin, G. A., Johnson, P. D. R. & Davies, J. K. Comparative genetic analysis of Mycobacterium ulcerans and Mycobacterium marinum reveals evidence of recent divergence. J. Bacteriol. 182, 6322–6330 (2000).

Marques, M. A. M., Chitale, S., Brennan, P. J. & Pessolani, M. C. V. Mapping and identification of the major cell-wall associated components of Mycobacterium leprae. Infect. Immun. 66, 2625–2631 (1998).

Jungblut, P. R. et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33, 1103–1117 (1999).

Andersson, J. O. & Andersson, S. G. E. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9, 664–671 (1999).

Anderssen, S. G. E. et al. The complete genome sequence of the obligate intracellular parasite Rickettsia prowazekii. Nature 396, 133–140 (1998).

Mizrahi, V., Dawes, S. S. & Rubin, H. in Molecular Genetics of Mycobacteria (eds Hatfull, G. F. & Jacobs, W. R. Jr) 159–172 (ASM, Washington DC, 2000).

Gordon, S. V., Heym, B., Parkhill, J., Barrell, B. & Cole, S. T. New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology 145, 881–892 (1999).

Wolf, Y. I., Aravind, L., Grishin, N. V. & Koonin, E. V. Evolution of amino-acyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9, 689–710 (1999).

Poulet, S. & Cole, S. T. Repeated DNA sequences in mycobacteria. Arch. Microbiol. 163, 79–86 (1995).

Cole, S. T. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 452, 7–10 (1999).

Ramakrishnan, L., Federspiel, N. A. & Falkow, S. Granuloma-specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

Daffe, M. & Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998).

Yuan, Y. & Barry, C. E. III A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 93, 12828–12833 (1996).

Draper, P., Dobson, G., Minnikin, D. E. & Minnikin, S. M. The mycolic acids of Mycobacterium leprae harvested from experimentally infected nine-banded armadillos. Ann. Microbiol. (Paris) 133, 39–47 (1982).

Glickman, M. S., Cox, J. S. & Jacobs, W. R. Jr A novel mycolic acid cyclopropane synthetase is required for coding, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).

Melancon-Kaplan, J. et al. Immunological significance of the cell wall of Mycobacterium leprae. Proc. Natl Acad. Sci. USA 85, 1917–1921 (1988).

Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).

Peterson, J. A. & Graham, S. E. A close family resemblance: the importance of structure in understanding cytochromes P450. Structure 6, 1079–1085 (1998).

Wheeler, P. R. & Ratledge, C. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 353–385 (Am. Soc. Microbiol., Washington DC, 1994).

Honer Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181, 7161–7167 (1999).

McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

Wheeler, P. R. Oxidation of carbon sources through the tricarboxylic acid cycle in Mycobacterium leprae grown in armadillo liver. J. Gen. Microbiol. 130, 381–389 (1984).

Ratledge, C. R. in The Biology of the Mycobacteria (eds Ratledge, C. & Stanford, J.) 53–94 (Academic, San Diego, 1982).

De Voss, J. J. et al. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl Acad. Sci. USA 97, 1252–1257 (2000).

Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631–645 (1998).

Hall, R. M. & Wheeler, P. R. Exochelin-mediated iron uptake into Mycobacterium leprae. Int. J. Lepr. Other Mycobact. Dis. 51, 490–494 (1983).

Makui, H. et al. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 35, 1065–1078 (2000).

Shimoji, Y., Ng, V., Matsumura, K., Fischetti, V. A. & Rambukkana, A. A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion. Proc. Natl Acad. Sci. USA 96, 9857–9862 (1999).

Rambukkana, A. Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282, 2076–2079 (1998).

Rambukkana, A., Salzer, J. L., Yurchenco, P. D. & Tuomanen, E. I. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-α2 chain. Cell 88, 811–821 (1997).

Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T. & Riley, L. W. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261, 1454–1457 (1993).

Eiglmeier, K., Fsihi, H., Heym, B. & Cole, S. T. On the catalase-peroxidase gene, katG, of Mycobacterium leprae and the implications for treatment of leprosy with isoniazid. FEMS Microbiol. Lett. 149, 273–278 (1997).

Eiglmeier, K., Honoré, N., Woods, S. A., Caudron, B. & Cole, S. T. Use of an ordered cosmid library to deduce the genomic organisation of Mycobacterium leprae. Mol. Microbiol. 7, 197–206 (1993).

Smith, D. R. et al. Multiplex sequencing of 1.5 Mb of the Mycobacterium leprae genome. Genome Res. 7, 802–819 (1997).

Bonfield, J. K., Smith, K. F. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 24, 4992–4999 (1995).

Altschul, S. F., Boguski, M. S., Gish, W. & Wooton, J. C. Issues in searching molecular sequence databases. Nature Genet. 6, 119–129 (1994).

Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–505 (2000).

Rutherford, K. Artemis: sequence visulaization and annotation. Bioinformatics 16, 944–945 (2000).