Mass transfer effects on the electropolymerization current efficiency of 3-methylthiophene in the magnetic field
Tóm tắt
3-Methylthiophene was chosen as a representative conducting polymer precursor, whose electropolymerization proceeds through the coupling of cation radicals. The density of the solution that contains electrogenerated 3-methylthienyl radicals and early oligomers is higher than the density of the surrounding solution, and at low (<0.2 M) monomer concentrations the diffusion layer falls, compromising the electropolymerization current efficiency. Applying a homogeneous magnetic field (3.0 T) perpendicular to the electrode surface (θ=0°) produces concentration gradient paramagnetic forces (F
∇C) that hold the diffusion layer in contact with the electrode. This gives time for more oligomers to get oxidized and for more cation radicals to couple so that the current efficiency increases from 0.028 to 0.037 at 0.05 M of monomer concentration, and from 0.051 to 0.071 at 0.1 M. With the magnetic field parallel to the electrode surface (θ=90°) Lorenz forces causing magnetohydrodynamic convection, in combination with F
∇C forces keeping the flow pattern in contact with the electrode, increase the current efficiency even more, to 0.048 at 0.05 M of monomer concentration, and to 0.076 at 0.1 M. At higher monomer concentrations (>0.2 M), the rate of radical coupling is evidently fast enough so that, even in the absence of a magnetic field, no natural convection effects are observed and the current efficiency (0.7–0.8) is not affected by the magnetic field.
Tài liệu tham khảo
Chiriac AP, Simionescu CI (2000) Prog Polym Sci 25:219
Landee CP, Melville D, Miller JS (1990) In: Gatteschi D, Kahn O, Miller JS, Palacio F (eds) Magnetic molecular materials, vol 198. Kluwer, Dordrecht, p 395
Kaptein R, Oosterhoff JL (1969) Chem Phys Lett 4:195
Closs GL (1969) J Am Chem Soc 91:4552
Chiriac AP, Simionescu CI, Neamtu I, Popa M (1998) Cell Chem Technol 32:425
Chiriac AP, Neamtu I, Cazacu G, Simionescu CI, Rozmarin Gh (1997) Angew Makromol Chem 246:1
Junlian H, Wu Q (1990) Chin J Polym Sci 8:108
Osawa S, Ogawa T, Ito M (1997) Synth Met 90:109
Wan M, Yang J (1995) Synth Met 69:155
Cai L-T, Yao S-B, Zhou S-M (1997) J Electroanal Chem 421:45
Inoue Y, Yamato M, Kimura T, Ito E (1997) Synth Met 84:435
Mogi I, Kamiko M (1996) J Cryst Growth 166:276
Mogi I, Kamiko M (1996) Bull Chem Soc Jpn 69:1889
Mogi I (1996) Chem Lett 25:419
Mogi I (1996) Bull Chem Soc Jpn 69:2661
Mogi I, Watanabe K (1997) Bull Chem Soc Jpn 70:2337
Roncali J (1992) Chem Rev 92:711
Steiner UE, Ulrich T (1989) Chem Rev 89:51
Leventis N, Gao X (2001) Anal Chem 73:3981
Pullins MD, Grant KM, White HS (2001) J Phys Chem B 105:8989
Ragsdale SR, Grant KM, White HS (1998) J Am Chem Soc 120:13461
Hinds G, Coey JMD, Lyons MEG (2001) Electrochem Commun 3:215
Hinds G, Spada FE, Coey JMD, Ní Mhíocháin TR, Lyons MEG (2001) J Phys Chem B 105:9487
Perov NS, Sheverdyaeva PM, Inoue M (2002) J Appl Phys 91:8557
Leventis N, Gao X (2002) J Am Chem Soc 124:1079
Bund A, Kuehnlein HH (2005) J Phys Chem B 109:19845
Leventis N, Dass A (2005) J Am Chem Soc 127:4988
Dass A, Counsil JA, Gao X, Leventis N (2005) J Phys Chem B 109:11065
Leventis N, Gao X (1999) J Phys Chem B 103:5832
Audebert P, Hapiot P (1995) Synth Met 75:95
Oshikiri Y, Sato M, Yamada A, Aogaki R (2004) Jpn J Appl Phys 43:3596
Grant KM, Hemmert JW, White HS (2002) J Am Chem Soc 124:462
Tourillon G (1986) In: Skotheim TA (ed) Handbook of conducting polymers, vol 1. Marcel Dekker, New York, p 293
Leventis N, Chen M, Gao X, Canalas M, Zhang P (1998) J Phys Chem B 102:3512
Ren X, Pickup PG (2001) Electrochim Acta 46:4177