Mass transfer effects on the electropolymerization current efficiency of 3-methylthiophene in the magnetic field

Springer Science and Business Media LLC - Tập 11 - Trang 727-735 - 2006
Nicholas Leventis1, Amala Dass1, Naveen Chandrasekaran1
1Department of Chemistry, University of Missouri-Rolla, Rolla, USA

Tóm tắt

3-Methylthiophene was chosen as a representative conducting polymer precursor, whose electropolymerization proceeds through the coupling of cation radicals. The density of the solution that contains electrogenerated 3-methylthienyl radicals and early oligomers is higher than the density of the surrounding solution, and at low (<0.2 M) monomer concentrations the diffusion layer falls, compromising the electropolymerization current efficiency. Applying a homogeneous magnetic field (3.0 T) perpendicular to the electrode surface (θ=0°) produces concentration gradient paramagnetic forces (F ∇C) that hold the diffusion layer in contact with the electrode. This gives time for more oligomers to get oxidized and for more cation radicals to couple so that the current efficiency increases from 0.028 to 0.037 at 0.05 M of monomer concentration, and from 0.051 to 0.071 at 0.1 M. With the magnetic field parallel to the electrode surface (θ=90°) Lorenz forces causing magnetohydrodynamic convection, in combination with F ∇C forces keeping the flow pattern in contact with the electrode, increase the current efficiency even more, to 0.048 at 0.05 M of monomer concentration, and to 0.076 at 0.1 M. At higher monomer concentrations (>0.2 M), the rate of radical coupling is evidently fast enough so that, even in the absence of a magnetic field, no natural convection effects are observed and the current efficiency (0.7–0.8) is not affected by the magnetic field.

Tài liệu tham khảo

Chiriac AP, Simionescu CI (2000) Prog Polym Sci 25:219 Landee CP, Melville D, Miller JS (1990) In: Gatteschi D, Kahn O, Miller JS, Palacio F (eds) Magnetic molecular materials, vol 198. Kluwer, Dordrecht, p 395 Kaptein R, Oosterhoff JL (1969) Chem Phys Lett 4:195 Closs GL (1969) J Am Chem Soc 91:4552 Chiriac AP, Simionescu CI, Neamtu I, Popa M (1998) Cell Chem Technol 32:425 Chiriac AP, Neamtu I, Cazacu G, Simionescu CI, Rozmarin Gh (1997) Angew Makromol Chem 246:1 Junlian H, Wu Q (1990) Chin J Polym Sci 8:108 Osawa S, Ogawa T, Ito M (1997) Synth Met 90:109 Wan M, Yang J (1995) Synth Met 69:155 Cai L-T, Yao S-B, Zhou S-M (1997) J Electroanal Chem 421:45 Inoue Y, Yamato M, Kimura T, Ito E (1997) Synth Met 84:435 Mogi I, Kamiko M (1996) J Cryst Growth 166:276 Mogi I, Kamiko M (1996) Bull Chem Soc Jpn 69:1889 Mogi I (1996) Chem Lett 25:419 Mogi I (1996) Bull Chem Soc Jpn 69:2661 Mogi I, Watanabe K (1997) Bull Chem Soc Jpn 70:2337 Roncali J (1992) Chem Rev 92:711 Steiner UE, Ulrich T (1989) Chem Rev 89:51 Leventis N, Gao X (2001) Anal Chem 73:3981 Pullins MD, Grant KM, White HS (2001) J Phys Chem B 105:8989 Ragsdale SR, Grant KM, White HS (1998) J Am Chem Soc 120:13461 Hinds G, Coey JMD, Lyons MEG (2001) Electrochem Commun 3:215 Hinds G, Spada FE, Coey JMD, Ní Mhíocháin TR, Lyons MEG (2001) J Phys Chem B 105:9487 Perov NS, Sheverdyaeva PM, Inoue M (2002) J Appl Phys 91:8557 Leventis N, Gao X (2002) J Am Chem Soc 124:1079 Bund A, Kuehnlein HH (2005) J Phys Chem B 109:19845 Leventis N, Dass A (2005) J Am Chem Soc 127:4988 Dass A, Counsil JA, Gao X, Leventis N (2005) J Phys Chem B 109:11065 Leventis N, Gao X (1999) J Phys Chem B 103:5832 Audebert P, Hapiot P (1995) Synth Met 75:95 Oshikiri Y, Sato M, Yamada A, Aogaki R (2004) Jpn J Appl Phys 43:3596 Grant KM, Hemmert JW, White HS (2002) J Am Chem Soc 124:462 Tourillon G (1986) In: Skotheim TA (ed) Handbook of conducting polymers, vol 1. Marcel Dekker, New York, p 293 Leventis N, Chen M, Gao X, Canalas M, Zhang P (1998) J Phys Chem B 102:3512 Ren X, Pickup PG (2001) Electrochim Acta 46:4177