Mass spectrometry–based proteomics turns quantitative

Nature Chemical Biology - Tập 1 Số 5 - Trang 252-262 - 2005
Shao‐En Ong1, Matthias Mann2
1The Broad Institute of MIT & Harvard, Cambridge, USA
2Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wilkins, M.R. et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13, 19–50 (1996).

Anderson, N.L. & Anderson, N.G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19, 1853–1861 (1998).

Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F. & Sanchez, J.C. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21, 1104–1115 (2000).

Aebersold, R. & Mann, M. Mass spectrometry–based proteomics. Nature 422, 198–207 (2003).

Peng, J. & Gygi, S.P. Proteomics: the move to mixtures. J. Mass Spectrom. 36, 1083–1091 (2001).

Brunet, S. et al. Organelle proteomics: looking at less to see more. Trends Cell Biol. 13, 629–638 (2003).

Garcia, B.A., Shabanowitz, J. & Hunt, D.F. Analysis of protein phosphorylation by mass spectrometry. Methods 35, 256–264 (2005).

Kuster, B., Schirle, M., Mallick, P. & Aebersold, R. Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell Biol. 6, 577–583 (2005).

Lill, J. Proteomic tools for quantitation by mass spectrometry. Mass Spectrom. Rev. 22, 182–194 (2003).

Sadygov, R.G., Cociorva, D. & Yates, J.R. Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book. Nat Methods 1, 195–202 (2004).

Wysocki, V.H., Resing, K.A., Zhang, Q. & Cheng, G. Mass spectrometry of peptides and proteins. Methods 35, 211–222 (2005).

Julka, S. & Regnier, F. Quantification in proteomics through stable isotope coding: a review. J. Proteome Res. 3, 350–363 (2004).

Leitner, A. & Lindner, W. Current chemical tagging strategies for proteome analysis by mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 813, 1–26 (2004).

Olsen, J.V., Ong, S.E. & Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3, 608–614 (2004).

Allet, N. et al. In vitro and in silico processes to identify differentially expressed proteins. Proteomics 4, 2333–2351 (2004).

Rappsilber, J., Ishihama, I., Foster, L.J., Mittler, G. & Mann, M. in Proceedings of the 51st American Society for Mass Spectrometry Conference on Mass Spectrometry (American Society for Mass Spectrometry, Montreal 2003).

Steen, H. & Mann, M. The ABC's (and XYZ's) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 5, 699–711 (2004).

Rappsilber, J., Ryder, U., Lamond, A.I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002).

Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J. & Weil, P.A. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol. 22, 4723–4738 (2002).

Ishihama, Y. et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteomics, advance online publication 2005 06 14 (10.174/mcp.M500061-MCP200).

Andersen, J.S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

Chelius, D. & Bondarenko, P.V. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J. Proteome Res. 1, 317–323 (2002).

Gillette, M.A., Mani, D.R. & Carr, S.A. Place of pattern in proteomic biomarker discovery. J. Proteome Res. 4, 1143–1154 (2005).

Carr, S.A., Huddleston, M.J. & Annan, R.S. Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239, 180–192 (1996).

Verma, R. et al. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455–460 (1997).

Steen, H., Jebanathirajah, J.A., Springer, M. & Kirschner, M.W. Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc. Natl. Acad. Sci. USA 102, 3948–3953 (2005).

De Leenheer, A.P. & Thienpont, L.M. Applications of isotope dilution-mass spectrometry in clinical chemistry, pharmcokinetics, and toxicology. Mass Spectrom. Rev. 11, 249–307 (1992).

Wulfkuhle, J.D., Liotta, L.A. & Petricoin, E.F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3, 267–275 (2003).

Zhang, R. & Regnier, F.E. Minimizing resolution of isotopically coded peptides in comparative proteomics. J. Proteome Res. 1, 139–147 (2002).

Kusmierz, J.J., Sumrada, R. & Desiderio, D.M. Fast atom bombardment mass spectrometric quantitative analysis of methionine-enkephalin in human pituitary tissues. Anal. Chem. 62, 2395–2400 (1990).

Stemmann, O., Zou, H., Gerber, S.A., Gygi, S.P. & Kirschner, M.W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

Kuhn, E. et al. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 4, 1175–1186 (2004).

Hopfgartner, G. et al. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J. Mass Spectrom. 39, 845–855 (2004).

Kirkpatrick, D.S., Gerber, S.A. & Gygi, S.P. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265–273 (2005).

Havlis, J. & Shevchenko, A. Absolute quantification of proteins in solutions and in polyacrylamide gels by mass spectrometry. Anal. Chem. 76, 3029–3036 (2004).

Aebersold, R. Constellations in a cellular universe. Nature 422, 115–116 (2003).

Beynon, R.J., Doherty, M.K., Pratt, J.M. & Gaskell, S.J. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signatures. Nature Methods 2, 587–589 (2005).

Rose, K. et al. A new mass-spectrometric C-terminal sequencing technique finds a similarity between γ-interferon and α 2-interferon and identifies a proteolytically clipped γ-interferon that retains full antiviral activity. Biochem. J. 215, 273–277 (1983).

Mirgorodskaya, O.A. et al. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun. Mass Spectrom. 14, 1226–1232 (2000).

Yao, X., Freas, A., Ramirez, J., Demirev, P.A. & Fenselau, C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842 (2001).

Rao, K.C., Palamalai, V., Dunlevy, J.R. & Miyagi, M. Lys-N catalyzed 18O labeling for comparative proteomics: Application to cytokines/LPS treated human retinal pigment epithelium cell line. Mol. Cell Proteomics, advance online publication 2005 07 05 (10.1074/mcp.M500150-MCP200).

Yao, X., Afonso, C. & Fenselau, C. Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J. Proteome Res. 2, 147–152 (2003).

Bantscheff, M., Dumpelfeld, B. & Kuster, B. Femtomol sensitivity post-digest (18)O labeling for relative quantification of differential protein complex composition. Rapid Commun. Mass Spectrom. 18, 869–876 (2004).

Staes, A. et al. Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J. Proteome Res. 3, 786–791 (2004).

Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

Hansen, K.C. et al. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell. Proteomics 2, 299–314 (2003).

Li, J., Steen, H. & Gygi, S.P. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol. Cell. Proteomics 2, 1198–1204 (2003).

Oda, Y. et al. Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 75, 2159–2165 (2003).

Olsen, J.V. et al. HysTag–a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol. Cell. Proteomics 3, 82–92 (2004).

Nielsen, P.A. et al. Proteomic mapping of brain plasma membrane proteins. Mol. Cell. Proteomics 4, 402–408 (2005).

Goodlett, D.R. et al. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun. Mass Spectrom. 15, 1214–1221 (2001).

Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

Salomon, A.R. et al. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc. Natl. Acad. Sci. USA 100, 443–448 (2003).

Brill, L.M. et al. Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal. Chem. 76, 2763–2772 (2004).

Munchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057 (2000).

Ji, J. et al. Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. J. Chromatogr. B Biomed. Sci. Appl. 745, 197–210 (2000).

Schmidt, A., Kellermann, J. & Lottspeich, F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5, 4–15 (2005).

Zhang, X., Jin, Q.K., Carr, S.A. & Annan, R.S. N-Terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Commun. Mass Spectrom. 16, 2325–2332 (2002).

Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

Langen, H., Fountoulakis, M., Evers, S., Wipf, B. & Berndt, P. in From Genome to Proteome, 3rd Siena 2D Electrophoresis Meeting (Wiley-VCH, Weinheim, Germany, Siena, 1998).

Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).

Conrads, T.P. et al. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal. Chem. 73, 2132–2139 (2001).

Krijgsveld, J. et al. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol. 21, 927–931 (2003).

Wu, C.C., MacCoss, M.J., Howell, K.E., Matthews, D.E. & Yates, J.R.I. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 76, 4951–4959 (2004).

Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

Chen, X., Smith, L.M. & Bradbury, E.M. Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Anal. Chem. 72, 1134–1143 (2000).

Veenstra, T.D., Martinovic, S., Anderson, G.A., Pasa-Tolic, L. & Smith, R.D. Proteome analysis using selective incorporation of isotopically labeled amino acids. J. Am. Soc. Mass Spectrom. 11, 78–82 (2000).

Zhu, H., Pan, S., Gu, S., Bradbury, E.M. & Chen, X. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom. 16, 2115–2123 (2002).

Jiang, H. & English, A.M. Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine. J. Proteome Res. 1, 345–350 (2002).

Ong, S.E., Kratchmarova, I. & Mann, M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181 (2003).

Foster, L.J., De Hoog, C.L. & Mann, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl. Acad. Sci. USA 100, 5813–5818 (2003).

Ibarrola, N., Kalume, D.E., Gronborg, M., Iwahori, A. & Pandey, A. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal. Chem. 75, 6043–6049 (2003).

Andersen, J.S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

Ibarrola, N., Molina, H., Iwahori, A. & Pandey, A. A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine. J. Biol. Chem. 279, 15805–15813 (2004).

Ong, S.E., Mittler, G. & Mann, M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat. Methods 1, 119–126 (2004).

Scott, L., Lamb, J., Smith, S. & Wheatley, D.N. Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br. J. Cancer 83, 800–810 (2000).

Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics 4, 310–327 (2005).

Gehrmann, M.L., Hathout, Y. & Fenselau, C. Evaluation of metabolic labeling for comparative proteomics in breast cancer cells. J. Proteome Res. 3, 1063–1068 (2004).

Amanchy, R., Kalume, D.E. & Pandey, A. Stable isotope labeling with amino acids in cell culture (SILAC) for studying dynamics of protein abundance and posttranslational modifications. Sci. STKE 267, l2 (2005).

Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics. in Handbook of Cell Biology 3rd edn. Vol. IV (ed. Celis, J.) (Academic Press, San Diego, 2005).

Ishihama, Y. et al. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol. 23, 617–621 (2005).

Schweitzer, B. & Kingsmore, S.F. Measuring proteins on microarrays. Curr. Opin. Biotechnol. 13, 14–19 (2002).

Zhu, H., Bilgin, M. & Snyder, M. Proteomics. Annu. Rev. Biochem. 72, 783–812 (2003).

Rappsilber, J. & Mann, M. What does it mean to identify a protein in proteomics? Trends Biochem. Sci. 27, 74–78 (2002).

Nesvizhskii, A.I. & Aebersold, R. Interpretation of shotgun proteomics data: The protein inference problem. Mol. Cell Proteomics, advance online publication 2005 07 11 (10.1074/mcp.R500012-MCP200).

Han, D.K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2001).

MacCoss, M.J., Wu, C.C., Liu, H., Sadygov, R. & Yates, J.R., III. A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal. Chem. 75, 6912–6921 (2003).

Schulze, W.X. & Mann, M. A novel proteomic screen for peptide-protein interactions. J. Biol. Chem. 279, 10756–10764 (2004).

Shiio, Y. et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21, 5088–5096 (2002).

Everley, P.A., Krijgsveld, J., Zetter, B.R. & Gygi, S.P. Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteomics 3, 729–735 (2004).

Gu, S. et al. Large-scale quantitative proteomic study of PUMA-induced apoptosis using two-dimensional liquid chromatography-mass spectrometry coupled with amino acid-coded mass tagging. J. Proteome Res. 3, 1191–1200 (2004).

Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

Blagoev, B. et al. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318 (2003).

Ranish, J.A. et al. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349–355 (2003).

Blagoev, B., Ong, S.E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145 (2004).

Zhang, Y. et al. Time-resolved mass spectrometry of tyrosine phosphorylatiopn sites in the EGF receptor signaling network reveals dynamic modules. Mol. Cell Proteomics, advance online publication 2005 06 11 (10.1074/mcp.M500089-MCP200).

Pratt, J.M. et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics 1, 579–591 (2002).

Saghatelian, A. & Cravatt, B.F. Assignment of protein function in the postgenomic era. Nat Chem. Biol. 1, 130–142 (2005).

Verhelst, S.H. & Bogyo, M. Chemical proteomics applied to target identification and drug discovery. Biotechniques 38, 175–177 (2005).

Sechi, S. & Chait, B.T. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal. Chem. 70, 5150–5158 (1998).

Shen, M. et al. Isolation and isotope labeling of cysteine- and methionine-containing tryptic peptides: application to the study of cell surface proteolysis. Mol. Cell. Proteomics 2, 315–324 (2003).

Sebastiano, R., Citterio, A., Lapadula, M. & Righetti, P.G. A new deuterated alkylating agent for quantitative proteomics. Rapid Commun. Mass Spectrom. 17, 2380–2386 (2003).

Pasquarello, C., Sanchez, J.C., Hochstrasser, D.F. & Corthals, G.L. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins. Rapid Commun. Mass Spectrom. 18, 117–127 (2004).

Zhou, H., Ranish, J.A., Watts, J.D. & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol. 20, 512–515 (2002).

Qiu, Y., Sousa, E.A., Hewick, R.M. & Wang, J.H. Acid-labile isotope-coded extractants: a class of reagents for quantitative mass spectrometric analysis of complex protein mixtures. Anal. Chem. 74, 4969–4979 (2002).

Shi, Y. et al. A simple solid phase mass tagging approach for quantitative proteomics. J. Proteome Res. 3, 104–111 (2004).

Shi, Y., Xiang, R., Horvath, C. & Wilkins, J.A. Quantitative analysis of membrane proteins from breast cancer cell lines BT474 and MCF7 using multistep solid phase mass tagging and 2D LC/MS. J. Proteome Res. 4, 1427–1433 (2005).

Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

Wang, S. & Regnier, F.E. Proteomics based on selecting and quantifying cysteine containing peptides by covalent chromatography. J. Chromatogr. A. 924, 345–357 (2001).

Che, F.Y. & Fricker, L.D. Quantitation of neuropeptides in Cpe(fat)/Cpe(fat) mice using differential isotopic tags and mass spectrometry. Anal. Chem. 74, 3190–3198 (2002).

Mason, D.E. & Liebler, D.C. Quantitative analysis of modified proteins by LC-MS/MS of peptides labeled with phenyl isocyanate. J. Proteome Res. 2, 265–272 (2003).

Lee, Y.H., Han, H., Chang, S.B. & Lee, S.W. Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability. Rapid Commun. Mass Spectrom. 18, 3019–3027 (2004).

Hoang, V.M. et al. Quantitative proteomics employing primary amine affinity tags. J. Biomol. Tech. 14, 216–223 (2003).

Hsu, J.L., Huang, S.Y., Chow, N.H. & Chen, S.H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003).

Cagney, G. & Emili, A. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat. Biotechnol. 20, 163–170 (2002).

Brancia, F.L., Openshaw, M.E. & Kumashiro, S. Investigation of the electrospray response of lysine-, arginine-, and homoarginine-terminal peptide mixtures by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 16, 2255–2259 (2002).

Brancia, F.L., Montgomery, H., Tanaka, K. & Kumashiro, S. Guanidino labeling derivatization strategy for global characterization of peptide mixtures by liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 76, 2748–2755 (2004).

Beardsley, R.L. & Reilly, J.P. Quantitation using enhanced signal tags: a technique for comparative proteomics. J. Proteome Res. 2, 15–21 (2003).

Peters, E.C., Horn, D.M., Tully, D.C. & Brock, A. A novel multifunctional labeling reagent for enhanced protein characterization with mass spectrometry. Rapid Commun. Mass Spectrom. 15, 2387–2392 (2001).

Syka, J.E. et al. Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res. 3, 621–626 (2004).

Kuyama, H. et al. An approach to quantitative proteome analysis by labeling tryptophan residues. Rapid Commun. Mass Spectrom. 17, 1642–1650 (2003).

Goshe, M.B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem. 73, 2578–2586 (2001).

Qian, W.J. et al. Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal. Chem. 75, 5441–5450 (2003).

Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

Amoresano, A., Marino, G., Cirulli, C. & Quemeneur, E. Mapping phosphorylation sites: a new strategy based on the use of isotopically labelled DTT and mass spectrometry. Eur. J. Mass Spectrom. (Chichester, Eng) 10, 401–412 (2004).

Vosseller, K. et al. Quantitative analysis of both protein expression and serine / threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5, 388–398 (2005).