Sự chuyển hóa khối lượng trong quá trình biến chất hematit và ý nghĩa đối với khoáng hóa urani tại mỏ Zoujiashan, bồn địa núi lửa Xiangshan

Journal of Earth Science - Tập 33 - Trang 422-434 - 2022
Teng Deng1,2,3, Guoxiang Chi4, Xiongjie Zhang5, Zenghua Li1,2,3,6, Deru Xu1,3, Shengmiao Li7, Pengfei Du8, Pei Shang1,3, Shaohao Zou1, Wanpeng Zhou1,3, Ke Xu3, Hai Yan3, Ma Wen3, Zhengpeng Ding3
1State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, China
2Key Laboratory of Uranium Geology, China Geological Survey, Tianjin, China
3School of Earth Sciences, East China University of Technology, Nanchang, China
4Department of Geology, University of Regina, Regina, Canada
5Engineering Research Center of Nuclear Technology Application, Ministry of Education, East China University of Technology, Nanchang, China
6Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang, China
7Geological Bureau of Hunan Province, Changsha, China
8Geologic Party No. 208, China National Nuclear Corporation, Baotou, China

Tóm tắt

Mỏ urani Zoujiashan trong cụm quặng Xiangshan là mỏ urani liên quan đến núi lửa lớn nhất tại Trung Quốc. Quặng loại hematit và fluorite là các kiểu khoáng hóa chủ yếu. Quá trình biến chất hematit trong cụm quặng Xiangshan có liên quan chặt chẽ đến khoáng hóa urani, chủ yếu xảy ra như các đá được hematit hóa bao quanh các quặng vein dạng fluorite phát triển trong đá mạch porphyritic bị biến đổi trước quặng. Các nghiên cứu chi tiết về mẫu đá và tính toán cân bằng khối lượng đã được thực hiện để đánh giá cơ chế lắng đọng urani và sự chuyển hóa khối lượng trong quá trình biến chất hematit. Quan sát về mẫu đá cho thấy rằng trong các đá đã được hematit hóa, orthoclase bị biến đổi nhiều hơn so với plagioclase, và sự hòa tan của thạch anh xảy ra phổ biến, trong khi đó trong các đá bị biến đổi, pyrite thường xuất hiện trong các hạt biotite đã bị biến đổi, và các hạt chlorite được tìm thấy tại một số nơi. Các tính toán cân bằng khối lượng cho thấy rằng Na2O và U đã được thu nhận, trong khi K2O, CaO và SiO2 đã bị mất, trong khi đó Fe2O3-t vẫn giữ nguyên hầu như không thay đổi trong quá trình biến chất hematit. Những quan sát này cho thấy rằng các dung dịch thủy nhiệt giàu Na và U nhưng nghèo Ca-K, và Fe2+ được sử dụng cho quá trình biến chất hematit phần lớn là nguồn gốc từ các đá mẹ, có khả năng từ biotite, pyrite và chlorite trong các đá nền. Fe2+ được cho là đã đóng vai trò như một chất khử để lắng đọng urani, và tính toán chỉ ra rằng việc oxi hóa Fe2+ do các đá mẹ cung cấp là đủ để hình thành các quặng có giá trị kinh tế. Do đó, quặng loại hematit được diễn giải là do phản ứng giữa các dung dịch quặng đã được oxi hóa và các thành phần bị khử trong các đá mẹ. Sự phát triển của calcite và pyrite trong các quặng fluorite cho thấy rằng có thể sự trộn lẫn giữa dung dịch giàu U và một dung dịch khác mang sulfur và carbon bị khử cũng đã góp phần vào khoáng hóa urani, bên cạnh sự sụt giảm nhiệt độ và áp suất liên quan đến việc hình thành vein.

Từ khóa

#urani #hematit #khoáng hóa #Xiangshan #dung dịch thủy nhiệt #quặng #biến chất

Tài liệu tham khảo

Bonnetti, C., Liu, X. D., Cuney, M., et al., 2020. Evolution of the Uranium Mineralisation in the Zoujiashan Deposit, Xiangshan Ore Field: Implications for the Genesis of Volcanic-Related Hydrothermal U Deposits in South China. Ore Geology Reviews, 122: 103514. https://doi.org/10.1016/j.oregeorev.2020.103514 Cathelineau, M., 1986. The Hydrothermal Alkali Metasomatism Effects on Granitic Rocks: Quartz Dissolution and Related Subsolidus Changes. Journal of Petrology, 27(4): 945–965. https://doi.org/10.1093/petrology/27.4.945 Chabiron, A., Cuney, M., Poty, B., 2003. Possible Uranium Sources for the Largest Uranium District Associated with Volcanism: The Streltsovka Caldera (Transbaikalia, Russia). Mineralium Deposita, 38(2): 127–140. https://doi.org/10.1007/s00126-002-0289-0 Chemillac, R., Cuney, M., Zhou, W., et al., 2005. The Xiangshan Uraniferous Caldera, Southeast China: Geochemistry and Melt Inclusions. In: International Symposium on Uranium Production and Raw Materials for the Nuclear Fuel Cycle-Supply and Demand, Economics, the Environment and Energy Security, Vienna, 20–24 June Chen, L. Q., Guo, F. S., Steel, R. J., et al., 2016. Petrography and Geochemistry of the Late Cretaceous Redbeds in the Gan-Hang Belt, Southeast China: Implications for Provenance, Source Weathering, and Tectonic Setting. International Geology Review, 58(10): 1196–1214. https://doi.org/10.1080/00206814.2016.1141378 Chen, Y. H., Chen, Z. Y., Cai, Y. Q., et al., 1997. Space-Time Evolution of Meso-Cenozoic Extensional Tectonics and Distributions of Uranium Mineralizations in Southeastern China. Uranium Geology, 13(3): 129–138 (in Chinese with English Abstract) Chen, Z. L., Wang, P. A., Wang, Y., et al., 2013. Ore-Controlling Tectonic Analysis and Ore-Prospecting in Shannan Mining Area of Xiangshan Uranium Ore-Field, Jiangxi. Journal of Earth Sciences and Environment, 35(2): 8–18 (in Chinese with English Abstract) Chen, Z. L., Yang, N., Wang, P. A., et al., 2011. Analysis of the Tectonic Stress Field in the Xiangshan Uranium Ore Field, Linchuan Area, Jiangxi, China. Geological Bulletin of China, 30(4): 514–531 (in Chinese with English Abstract) Chu, H. X., Chi, G. X., Bosman, S., et al., 2015. Diagenetic and Geochemical Studies of Sandstones from Drill Core DV10-001 in the Athabasca Basin, Canada, and Implications for Uranium Mineralization. Journal of Geochemical Exploration, 148: 206–230. https://doi.org/10.1016/j.gexplo.2014.10.002 Cuney, M., Kyser, K., 2015. Geology and Geochemistry of Uranium and Thorium Deposits. Mineralogical Association of Canada, 52: 362 Dahlkamp, F. J., 2009. China, Peoples Republic of, Uranium Deposits of the World, Springer, Berlin Dai, J. Q., Li, G. R., Guo, F. S., et al., 2018. Chemical Components and Boron Isotopic Composition of Tourmaline of Uranium Bearing Porphyroclastic Lava in Xiangshan, Jiangxi. Journal of Jilin University (Earth Science Edition), 48(5): 1378–1393 (in Chinese with English Abstract) Eggleton, R. A., Banfield J. F., 1985. The Alteration of Granitic Biotite to Chlorite. American Mineralogist, 70: 902–910 Fan, H. H., Ling, H. F., Wang, D. Z., et al., 2003. Study on Metallogenetic Mechanism of Xiangshan Uranium Ore-Field. Uranium Geology, 19(4): 208–213 (in Chinese with English Abstract) Fan, H. H., Wang, D. Z., Shen, W. Z., et al., 2005. Formation Age of the Intermediate-Basic Dikes and Volcanic—Intrusive Complex in Xiangshan, Jiangxi Province. Geological Review, 51(1): 86–91 (in Chinese with English Abstract) Fan, S., Zhang, Z., Ma, C., et al., 2019. Coronas around Olivine in the Miaowan Olivine Norite, Yangtze Craton, South China. Journal of Earth Science, 30(5): 924–937. https://doi.org/10.1007/s12583-019-1012-8 Grant, J. A., 1986. The Isocon Diagram; A Simple Solution to Gresens’ Equation for Metasomatic Alteration. Economic Geology, 81(8): 1976–1982. https://doi.org/10.2113/gsecongeo.81.8.1976 Gresens, R. L., 1967. Composition-Volume Relationships of Metasomatism. Chemical Geology, 2: 47–65. https://doi.org/10.1016/0009-2541(67)90004-6 Guo, F. S., Li, Z. H., Deng, T., et al., 2020. Key Factors Controlling Volcanic-Related Uranium Mineralization in the Xiangshan Basin, Jiangxi Province, South China: A Review. Ore Geology Reviews, 122: 103517. https://doi.org/10.1016/j.oregeorev.2020.103517 Guo, F. S., Lin, Z. Y., Li, G. R., et al., 2017. Study on the Geological Structure of Xiangshan Uranium-Bearing Volcanic Basin: Evidences from Magnetotelluric Sounding and GOCAD Modeling. Chinese Journal of Geophysics, 60(4): 1491–1510 (in Chinese with English Abstract) Guo, F. S., Yang, Q. K., Meng, X. J., et al., 2016. Geochemical Characteristics and Petrogenesis of the Acidic Volcano-Intrusive Complexes, Xiangshan, Jiangxi. Acta Geologica Sinica, 90(4): 769–784 (in Chinese with English Abstract) Guo, J., 2014. The Petrology and Uranium Mineralization Alteration Study of Deep Drilling in Xiangshan Uranium Orefield. Beijing Research Institute of Uranium Geology, Beijing. https://doi.org/cnki:cdmd:2.1014.038320 Hu, B. Q., Wang, Q., Qiu, L. F., et al., 2016. Geochemistry of Alkali Metasomatized Rocks of Zoujiashan Uranium Ore-Deposit in Xiangshan Ore-Field. Geotectonica et Metallogenia, 40(2): 377–385 (in Chinese with English Abstract) Hu, R. Z., Burnard, P. G., Bi, X. W., et al., 2009. Mantle-Derived Gaseous Components in Ore-Forming Fluids of the Xiangshan Uranium Deposit, Jiangxi Province, China: Evidence from He, Ar and C Isotopes. Chemical Geology, 266(1/2): 86–95. https://doi.org/10.1016/j.chemgeo.2008.07.017 Hu, R., Bi, X., Zhou, M., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103: 583–598. https://doi.org/10.2113/gsecongeo.103.3.583 Huang, X. Q., Chen, Z. L., Wang, P. A., et al., 2008. Fluid Inclusion Study of the Shazhou Uranium Orefield in the Xiangshan Deposit, Jiangxi. Journal of Geomechanics, 14(2): 176–185 (in Chinese with English Abstract) IAEA (International Atomic Energy Agency), 2018. Regulations for the Safe Transport of Radioactive Material. IAEA Safety Standards Series No. SSR-6. https://www.iaea.org/publications/12288/regulations-for-the-safe-transport-of-radioactive-material Ji, S., 1983. The Genetic Mechanism of Reddening. Uranium Geology, 3: 22–26 (in Chinese) Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2006. Low-Degree Melting of a Metasomatized Lithospheric Mantle for the Origin of Cenozoic Yulong Monzogranite-Porphyry, East Tibet: Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints. Earth and Planetary Science Letters, 241(3/4): 617–633. https://doi.org/10.1016/j.epsl.2005.11.023 Jiang, Z. P., Dong, Y. J., Xue, Z. H., et al., 2005. The Prob on the Metamorphic Process of Schist in the Metamorphic Basement of Xiangshan Uranium Mineral Field. Journal of East China University of Technology (Natural Science), 28(2): 112–117 (in Chinese with English Abstract) Jin, J. J., Ma, X. Y., Kim, C. Y., et al., 2007. Adsorption of V on a Hematite (0001) Surface and Its Oxidation: Monolayer Coverage. Surface Science, 601(19): 4571–4581. https://doi.org/10.1016/j.susc.2007.07.010 Kish, L., Cuney, M., 1981. Uraninite-Albite Veins from the Mistamisk Valley of the Labrador Trough, Quebec. Mineralogical Magazine, 44(336): 471–483. https://doi.org/10.1180/minmag.1981.044.336.13 Komninou, A., Sverjensky, D. A., 1996. Geochemical Modeling of the Formation of an Unconformity-Type Uranium Deposit. Economic Geology, 91(3): 590–606. https://doi.org/10.2113/gsecongeo.91.3.590 Langmuir, D., 1978. Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochimica et Cosmochimica Acta, 42(6): 547–569. https://doi.org/10.1016/0016-7037(78)90001-7 Li, H. D., Pan, J. Y., Xia, F., et al., 2016. Hydrothermal Alteration and Its Geochemical Characteristics of Lijialing Deposit in Xiangshan Uranium Ore Deposit. Geoscience, 30(3): 555–566 (in Chinese with English Abstract) Li, Y. H., Duan, C., Zhao, Y., et al., 2016. The Role of Oxidizing Reducing Barrier in Mineralization of Hydrothermal Uranium Ore. Acta Geologica Sinica, 90(2): 201–218 (in Chinese with English Abstract) Liu, Q. Y., Zhu, D. Y., Jin, Z. J., et al., 2016. Coupled Alteration of Hydrothermal Fluids and Thermal Sulfate Reduction (TSR) in Ancient Dolomite Reservoirs—An Example from Sinian Dengying Formation in Sichuan Basin, Southern China. Precambrian Research, 285: 39–57. https://doi.org/10.1016/j.precamres.2016.09.006 Liu, Y., Liu, H. C., Li, X. H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25(6): 552–558 (in Chinese with English Abstract) Miller, W. E., Ackerman, J. P., Battles, J. E., et al., 1991. Uranium Chloride Extraction of Transuranium Elements from LWR Fuel. Office of Scientific and Technical Information, U. S. Dept. of Energy, Washington, D. C. Montreuil, J. F., Corriveau, L., Potter, E. G., et al., 2016. On the Relationship between Alteration Facies and Metal Endowment of Iron Oxide-Alkali-Altered Systems, Southern Great Bear Magmatic Zone (Canada). Economic Geology, 111(8): 2139–2168. https://doi.org/10.2113/econgeo.111.8.2139 Morey, G. W., Fournier, R. O., Rowe, J. J., 1962. The Solubility of Quartz in Water in the Temperature Interval from 25 to 300 °C. Geochimica et Cosmochimica Acta, 26(10): 1029–1043. https://doi.org/10.1016/0016-7037(62)90027-3 Ng, R., Alexandre, P., Kyser, K., et al., 2013. Oxidation State of Iron in Alteration Minerals Associated with Sandstone-Hosted Unconformity-Related Uranium Deposits and Apparently Barren Alteration Systems in the Athabasca Basin, Canada: Implications for Exploration. Journal of Geochemical Exploration, 130: 22–43. https://doi.org/10.1016/j.gexplo.2013.02.009 Polito, P. A., Kyser, T. K., Stanley, C., 2009. The Proterozoic, Albitite-Hosted, Valhalla Uranium Deposit, Queensland, Australia: A Description of the Alteration Assemblage Associated with Uranium Mineralisation in Diamond Drill Hole V39. Mineralium Deposita, 44(1): 11–40. https://doi.org/10.1007/s00126-007-0162-2 Qiu, L. F., Ou, G. X., Zhang, M., et al., 2012. Characteristics and Origin of Ore-Forming Fluid of Julong’an Uranium Deposit in Xiangshan Uranium Orefield. Mineral Deposits, 31(2): 271–281 (in Chinese with English Abstract) Rich, R. A., Holland, H. D., Petersen, U., 1977. Hydrothermal Uranium Deposits. Elsevier Science, New York Richard, A., Rozsypal, C., Mercadier, J., et al., 2012. Giant Uranium Deposits Formed from Exceptionally Uranium-Rich Acidic Brines. Nature Geoscience, 5(2): 142–146. https://doi.org/10.1038/ngeo1338 Shao, F., 2007. Study on Water-Rock Interaction and Its Relation with Uranium Metallogenesis: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract) Shao, F., Chen, X. M., Xu, H. L., et al., 2008. Discussion of Metallogenic Substance Source of Xiangshan Uranium Orefield. Journal of East China Institute of Technology (Natural Science), 31(1): 39–44, 80 (in Chinese with English Abstract) Shao, F., Xu, J. J., Mao, Y. F., et al., 2013. Preliminary Discussion on Second Ore-Prospecting Space in Xiangshan Uranium Ore Field. World Nuclear Geoscience, 30(4): 187–192 (in Chinese with English Abstract) Skirrow, R. G., Mercadier, J., Armstrong, R., et al., 2016. The Ranger Uranium Deposit, Northern Australia: Timing Constraints, Regional and Ore-Related Alteration, and Genetic Implications for Unconformity-Related Mineralisation. Ore Geology Reviews, 76: 463–503. https://doi.org/10.1016/j.oregeorev.2015.09.001 Su, S., Jiang, G., Xiao, W., 1982. Metallogenic Temperature of 1220 Uranium Ore Field and Precipitation Environment and Mechanism of Pitchblende. Radioactive Geology, 2: 300–307. https://doi.org/cnki:sun:gwyd.0.1982-04-002 Sun, H., Qin, K. Z., Li, J. X., et al., 2008. Constraint of Mantle Partial Melting on PGE Mineralization of Mafic-Ultramafic Intrusions in Eastern Tianshan: Case Study on Tulargen and Xiangshan Cu-Ni Deposits. Acta Petrologica Sinica, 24(5): 1079–1086. https://doi.org/cnki:sun:ysxb.0.2008-05-015 Timofeev, A., Migdisov, A. A., Williams-Jones, A. E., et al., 2018. Uranium Transport in Acidic Brines under Reducing Conditions. Nature Communications, 9(1): 1469. https://doi.org/10.1038/s41467-018-03564-7 Wang, X. Y., Yang, Z., Chen, N. S., et al., 2018. Petrogenesis and Ore Genesis of the Late Yanshanian Granites and Associated Porphyry-Skarn W-Mo Deposits from the Yunkai Area of South China: Evidence from the Zircon U-Pb Ages, Hf Isotopes and Sulfide S-Fe Isotopes. Journal of Earth Science, 29(4): 939–959. https://doi.org/10.1007/s12583-017-0901-1 Wang, Y. J., Lin, J. R., Hu, Z. H., et al., 2021. Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Compositions of Dacitic Porphyry in Zoujiashan Deposit of Xiangshan Uranium Orefield and Its Geological Implication. Earth Science, 46(1): 31–42 (in Chinese with English Abstract) Wei, X. R., Lin, G., Long, Q. H., et al., 2006. Feature of Zoujiashan-Shidong Structure and Its Controlling over Uranium Deposit. Uranium Geology, 22(5): 281–289 (in Chinese with English Abstract) Wersin, P., Hochella, M. F. Jr, Persson, P. Jr, et al., 1994. Interaction between Aqueous Uranium(VI) and Sulfide Minerals: Spectroscopic Evidence for Sorption and Reduction. Geochimica et Cosmochimica Acta, 58(13): 2829–2843. https://doi.org/10.1016/0016-7037(94)90117-1 Wilde, A. R., Wall, V. J., 1987. Geology of the Nabarlek Uranium Deposit, Northern Territory. Australia. Economic Geology, 82(5): 1152–1168. https://doi.org/10.2113/gsecongeo.82.5.1152 Wu, H. Y., Chi, F. T., Zhang, S., et al., 2019. Control of Pore Chemistry in Metal-Organic Frameworks for Selective Uranium Extraction from Seawater. Microporous and Mesoporous Materials, 288: 109567. https://doi.org/10.1016/j.micromeso.2019.109567 Yan, B., Yan, H., Wei, W. F., et al., 2014. Helium—Argon Isotopic Characters and Geological Significance of the Shazhou Uranium Deposit, Xiangshan Orefield, Jiangxi Province. Geological Review, 60(3): 624–634 (in Chinese with English Abstract) Yang, S. Y., Jiang, S. Y., Jiang, Y. H., et al., 2010. Zircon U-Pb Geochronology, Hf Isotopic Composition and Geological Implications of the Rhyodacite and Rhyodacitic Porphyry in the Xiangshan Uranium Ore Field, Jiangxi Province, China. Science China Earth Sciences, 53(10): 1411–1426. https://doi.org/10.1007/s11430-010-4058-0 Yang, S. Y., Jiang, S. Y., Jiang, Y. H., et al., 2011. Geochemical, Zircon U-Pb Dating and Sr-Nd-Hf Isotopic Constraints on the Age and Petrogenesis of an Early Cretaceous Volcanic-Intrusive Complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1/2): 21–48. https://doi.org/10.1007/s00710-010-0136-4 Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2013. Petrogenesis and Tectonic Significance of Early Cretaceous High-Zr Rhyolite in the Dazhou Uranium District, Gan-Hang Belt, Southeast China. Journal of Asian Earth Sciences, 74: 303–315. https://doi.org/10.1016/j.jseaes.2012.12.024 Yeo, G., Potter, E., 2010. Review of Reducing Mechanisms Potentially Involved in the Formation of Unconformity-Type Uranium Deposits and Their Relevance to Exploration. Summary of Investigations, 2: 1–13 Yu, Z. Q., Ling, H. F., Mavrogenes, J., et al., 2019. Metallogeny of the Zoujiashan Uranium Deposit in the Mesozoic Xiangshan Volcanic-Intrusive Complex, Southeast China: Insights from Chemical Compositions of Hydrothermal Apatite and Metal Elements of Individual Fluid Inclusions. Ore Geology Reviews, 113: 103085. https://doi.org/10.1016/j.oregeorev.2019.103085 Zhang, W. L., Li, Z. Y., 2005. Metallogenetic Characteristics and Material Source of Zoujiashan Uranium Deposit, Jiangxi Province. Geoscience, 19(3): 369–374 (in Chinese with English Abstract) Zhang, W. L., Yu, X. C., 2011. A Study of Integrated Metallogenic Model for the Xiangshan Uranium Field. Geotectonica et Metallogenia, 35(2): 249–258 (in Chinese with English Abstract) Zhang, Y., Gartrell, A., Underschultz, J. R., et al., 2009. Numerical Modelling of Strain Localisation and Fluid Flow during Extensional Fault Reactivation: Implications for Hydrocarbon Preservation. Journal of Structural Geology, 31(3): 315–327. https://doi.org/10.1016/j.jsg.2008.11.006 Zhang, Z. W., Shu, Q., Yang, X. Y., et al., 2019. Review on the Tectonic Terranes Associated with Metallogenic Zones in Southeast Asia. Journal of Earth Science, 30(1): 1–19. https://doi.org/10.1007/s12583-019-0858-0 Zhao, M., Yang, S. Y., Zuo, R. G., et al., 2015. Magmatic Evolution Characteristics of Xiangshan Volcanic-Intrusive Complex from the Gan-Hang Belt: Studies on the Mineral Chemistry of Plagioclase and Biotite. Acta Petrologica Sinica, 31(3): 759–768 (in Chinese with English Abstract) Zheng, Y., Fu, B., Gong, B., 1996. Physico-Chemical Conditions of Mineralization in No. 6217 Granite Type Uranium Deposit. Acta Mineralogica Sinica, 16: 20–27 (in Chinese with English Abstract)