Cân bằng khối lượng của các tảng băng ở Nam Cực và Greenland được giám sát từ không gian

Geophysical surveys - Tập 44 - Trang 1615-1652 - 2023
Inès N. Otosaka1, Martin Horwath2, Ruth Mottram3, Sophie Nowicki4
1Department of Geography and Environmental Sciences, Centre for Polar Observation and Modelling, Northumbria University, Newcastle-Upon-Tyne NE1 8ST, UK
2Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany
3Research and Development Department, Danish Meteorological Institute, Copenhagen Ø, Denmark
4Department of Geology and RENEW Institute, State University of New York at Buffalo, Buffalo, USA

Tóm tắt

Dữ liệu vệ tinh đã tiết lộ rằng các tảng băng ở Greenland và Nam Cực đang thay đổi nhanh chóng do nhiệt độ không khí và biển ấm lên. Điều quan trọng là các quan sát từ trái đất giờ đây có thể được sử dụng để đo đạc cân bằng khối lượng tảng băng ở quy mô lục địa, điều này có thể giúp giảm bớt sự không chắc chắn về đóng góp của các tảng băng trong quá khứ, hiện tại và tương lai đối với mực nước biển toàn cầu. Sự ra mắt của các nhiệm vụ vệ tinh dành riêng cho các vùng cực đã dẫn đến những tiến bộ lớn trong việc đánh giá tốt hơn trạng thái của các tảng băng, mà kết hợp với các mô hình tảng băng đã làm sâu sắc thêm hiểu biết của chúng ta về các quá trình vật lý dẫn đến những thay đổi trong các đặc tính của tảng băng. Hiện nay đã có một hồ sơ vệ tinh dài ba thập kỷ về những thay đổi khối lượng ở Nam Cực và Greenland, và các nhiệm vụ vệ tinh mới đang được lên kế hoạch để tiếp tục lưu trữ hồ sơ này và phát triển khả năng quan sát của chúng ta, điều này là rất quan trọng khi các tảng băng vẫn là thành phần không chắc chắn nhất trong sự gia tăng mực nước biển trong tương lai. Trong bài báo này, chúng tôi xem xét các cơ chế dẫn đến những thay đổi về khối lượng của các tảng băng và mô tả công nghệ vệ tinh tân tiến được sử dụng để theo dõi cân bằng khối lượng của Greenland và Nam Cực, cung cấp cái nhìn tổng quan về những đóng góp của các quan sát từ trái đất đối với kiến thức của chúng ta về những khu vực rộng lớn và xa xôi này.

Từ khóa

#cân bằng khối lượng #tảng băng #vệ tinh #Nam cực #Greenland #quan sát trái đất

Tài liệu tham khảo

Abshire JB, Sun X, Riris H, Sirota JM, McGarry JF, Palm S, Yi D, Liiva P (2005) Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett. https://doi.org/10.1029/2005GL024028 Adusumilli SA, Fish M, Fricker HA, Medley B (2021) Atmospheric River precipitation contributed to rapid increases in surface height of the west antarctic ice sheet in 2019. Geophys Res Lett 48:e2020GL091076. https://doi.org/10.1029/2020GL091076 Agosta C, Amory C, Kittel C, Orsi A, Favier V, Gallée H, van den Broeke MR, Lenaerts JTM, van Wessem JM, van de Berg WJ, Fettweis X (2019) Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere 13:281–296. https://doi.org/10.5194/tc-13-281-2019 Arndt JE, Schenke HW, Jakobsson M, Nitsche FO, Buys G, Goleby B, Rebesco M, Bohoyo F, Hong J, Black J, Greku R, Udintsev G, Barrios F, Reynoso-Peralta W, Taisei M, Wigley R (2013) The International Bathymetric Chart of the Southern Ocean (IBCSO) version 1.0—a new bathymetric compilation covering circum-Antarctic waters. Geophys Res Lett 40:3111–3117. https://doi.org/10.1002/grl.50413 Asay-Davis XS, Cornford SL, Durand G, Galton-Fenzi BK, Gladstone RM, Gudmundsson GH, Hattermann T, Holland DM, Holland D, Holland PR, Martin DF, Mathiot P, Pattyn F, Seroussi H (2016) Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1). Geosci Model Dev 9:2471–2497. https://doi.org/10.5194/gmd-9-2471-2016 Bamber J, Dawson G (2020) Complex evolving patterns of mass loss from Antarctica’s largest glacier. Nat Geosci 13:127–131. https://doi.org/10.1038/s41561-019-0527-z Bamber JL, Vaughan DG, Joughin I (2000) Widespread complex flow in the interior of the antarctic ice sheet. Science 287:1248–1250. https://doi.org/10.1126/science.287.5456.1248 Banwell AF, MacAyeal DR, Sergienko OV (2013) Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys Res Lett 40:5872–5876. https://doi.org/10.1002/2013GL057694 Barletta VR, Sørensen LS, Forsberg R (2013) Scatter of mass changes estimates at basin scale for Greenland and Antarctica. Cryosphere 7:1411–1432. https://doi.org/10.5194/tc-7-1411-2013 Barletta VR, Bevis M, Smith BE, Wilson T, Brown A, Bordoni A, Willis M, Khan SA, Rovira-Navarro M, Dalziel I, Smalley R, Kendrick E, Konfal S, Caccamise DJ, Aster RC, Nyblade A, Wiens DA (2018) Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science 360:1335–1339. https://doi.org/10.1126/science.aao1447 Barthel A, Agosta C, Little CM, Hattermann T, Jourdain NC, Goelzer H, Nowicki S, Seroussi H, Straneo F, Bracegirdle TJ (2020) CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica. Cryosphere 14:855–879. https://doi.org/10.5194/tc-14-855-2020 Benn DI, Warren CR, Mottram RH (2007) Calving processes and the dynamics of calving glaciers. Earth Sci Rev 82:143–179. https://doi.org/10.1016/j.earscirev.2007.02.002 Benn DI, Cowton T, Todd J, Luckman A (2017) Glacier calving in Greenland. Curr Clim Change Rep 3:282–290. https://doi.org/10.1007/s40641-017-0070-1 Bennett MR (2003) Ice streams as the arteries of an ice sheet: their mechanics, stability and significance. Earth Sci Rev 61:309–339. https://doi.org/10.1016/S0012-8252(02)00130-7 Berthier E, Scambos TA, Shuman CA (2012) Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophys Res Lett. https://doi.org/10.1029/2012GL051755 Bettadpur S (2018) UTCSR level-2 processing standards document (for level-2 product release 0006) (Rev. 5.0, April 18, 2018). GRACE Publication, pp 327–742 Bindschadler RA, Scambos TA (1991) Satellite-Image-derived velocity field of an Antarctic ice stream. Science 252:242–246. https://doi.org/10.1126/science.252.5003.242 Böning CW, Behrens E, Biastoch A, Getzlaff K, Bamber JL (2016) Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat Geosci 9:523–527. https://doi.org/10.1038/ngeo2740 Burton-Johnson A, Dziadek R, Martin C (2020) Review article: geothermal heat flow in Antarctica: current and future directions. Cryosphere 14:3843–3873. https://doi.org/10.5194/tc-14-3843-2020 Caesar L, Rahmstorf S, Robinson A, Feulner G, Saba V (2018) Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556:191–196. https://doi.org/10.1038/s41586-018-0006-5 Caron L, Ivins ER, Larour E, Adhikari S, Nilsson J, Blewitt G (2018) GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys Res Lett 45:2203–2212. https://doi.org/10.1016/j.epsl.2019.115957 Choi Y, Morlighem M, Rignot E, Wood M (2021) Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Commun Earth Environ. https://doi.org/10.1038/s43247-021-00092-z Christianson K, Bushuk M, Dutrieux P, Parizek BR, Joughin IR, Alley RB, Shean DE, Abrahamsen EP, Anandakrishnan S, Heywood KJ, Kim TW, Lee SH, Nicholls K, Stanton T, Truffer M, Webber BGM, Jenkins A, Jacobs S, Bindschadler R, Holland DM (2016) Sensitivity of Pine Island Glacier to observed ocean forcing. Geophys Res Lett 43:10817–10825. https://doi.org/10.1002/2016GL070500 Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson R, Kaser G, Möller L, Nicholson L, Zemp M (2011) Glossary of glacier mass balance and related terms. ParisIACS Contribution No. 2 Dahle C, Murböck M, Flechtner F, Dobslaw H, Michalak G, Neumayer KH, Abrykosov O, Reinhold A, König R, Sulzbach R, Förste C (2019) The GFZ GRACE RL06 monthly gravity field time series: processing details and quality assessment. Remote Sens 11(18):2116. https://doi.org/10.3390/rs11182116 Davis PED, Jenkins A, Nicholls KW, Brennan PV, Abrahamsen EP, Heywood KJ, Dutrieux P, Cho KH, Kim TW (2018) Variability in basal melting beneath pine island ice shelf on weekly to monthly timescales. J Geophys Res Oceans 123:8655–8669. https://doi.org/10.1029/2018JC014464 De Angelis H, Skvarca P (2003) Glacier surge after ice shelf collapse. Science 299:1560–1562. https://doi.org/10.1126/science.1077987 De Rydt J, Reese R, Paolo FS, Gudmundsson GH (2021) Drivers of Pine Island Glacier speed-up between 1996 and 2016. Cryosphere 15:113–132. https://doi.org/10.5194/tc-15-113-2021 de Fleurian B, Morlighem M, Seroussi H, Rignot E, van den Broeke MR, Kuipers Munneke P, Mouginot J, Smeets PCJP, Tedstone AJ (2016) A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland. J Geophys Res Earth Surf 121:1834–1848. https://doi.org/10.1002/2016JF003842 DeConto RM, Pollard D (2016) Contribution of Antarctica to past and future sea-level rise. Nature 531:591–591. https://doi.org/10.1038/nature17145 Delhasse A, Fettweis X, Kittel C, Amory C, Agosta C (2018) Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere 12:3409–3418. https://doi.org/10.5194/tc-12-3409-2018 Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM, van den Broeke MR, Moholdt G (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502:89–92. https://doi.org/10.1038/nature12567 Diener T, Sasgen I, Agosta C, Fürst JJ, Braun MH, Konrad H, Fettweis X (2021) Acceleration of dynamic ice loss in Antarctica from satellite gravimetry. Front Earth Sci. https://doi.org/10.3389/feart.2021.741789 Ditmar P (2022) How to quantify the accuracy of mass anomaly time-series based on GRACE data in the absence of knowledge about true signal? J Geodesy 96(8):1–22. https://doi.org/10.1007/s00190-022-01640-x Dobslaw H, Bergmann-Wolf I, Dill R, Poropat L, Thomas M, Dahle C, Esselborn S, König R, Flechtner F (2017) A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys J Int 211:263–269. https://doi.org/10.1093/gji/ggx302 Döhne T, Horwath M, Groh A, Buchta E (2023) The sensitivity kernel perspective on GRACE mass change estimates. J Geodesy. https://doi.org/10.1007/s00190-022-01697-8 Dupont, T. K., Alley, R. B. (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical research letters, 32:L04503-n/a. https://doi.org/10.1029/2004GL022024 Dutrieux P, De Rydt J, Jenkins A, Holland PR, Ha HK, Lee SH, Steig EJ, Ding Q, Abrahamsen EP, Schröder M (2014) Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343:174–178. https://doi.org/10.1126/science.1244341 Edwards TL, Brandon MA, Durand G, Edwards NR, Golledge NR, Holden PB, Nias IJ, Payne AJ, Ritz C, Wernecke A (2019) Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566:58–64. https://doi.org/10.1038/s41586-019-0901-4 Edwards TL, Nowicki S, Marzeion B, Hock R, Goelzer H, Seroussi H, Jourdain NC, Slater DA, Turner FE, Smith CJ, McKenna CM, Simon E, Abe-Ouchi A, Gregory JM, Larour E, Lipscomb WH, Payne AJ, Shepherd A, Agosta C, Alexander P, Albrecht T, Anderson B, Asay-Davis X, Aschwanden A, Barthel A, Bliss A, Calov R, Chambers C, Champollion N, Choi Y, Cullather R, Cuzzone J, Dumas C, Felikson D, Fettweis X, Fujita K, Galton-Fenzi BK, Gladstone R, Golledge NR, Greve R, Hattermann T, Hoffman MJ, Humbert A, Huss M, Huybrechts P, Immerzeel W, Kleiner T, Kraaijenbrink P, Le clec’h, S., Lee, V., Leguy, G. R., Little, C. M., Lowry, D. P., Malles, J.-H., Martin, D. F., Maussion, F., Morlighem, M., O’Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A., Shafer, C., Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo, F., Sun, S., Tarasov, L., Trusel, L. D., Van Breedam, J., van de Wal, R., van den Broeke, M., Winkelmann, R., Zekollari, H., Zhao, C., Zhang, T., Zwinger, T. (2021) Projected land ice contributions to twenty-first-century sea level rise. Nature 593:74–82. https://doi.org/10.1038/s41586-021-03302-y Enderlin EM, Howat IM, Jeong S, Noh MJ, Angelen JH, van den Broeke MR (2014) An improved mass budget for the Greenland ice sheet. Geophys Res Lett 41:866–872. https://doi.org/10.1002/2013GL059010 Engels O, Gunter B, Riva R, Klees R (2018) Separating geophysical signals using GRACE and high-resolution data: a case study in Antarctica. Geophysical Res Lett 45:12340–312349. https://doi.org/10.1029/2018GL079670 Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ (2010) Climate of the Greenland ice sheet using a high-resolution climate model—part 2: near-surface climate and energy balance. Cryosphere 4:529–544. https://doi.org/10.5194/tc-4-529-2010 Farinotti D, Huss M, Fürst JJ, Landmann J, Machguth H, Maussion F, Pandit A (2019) A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat Geosci 12:168–173. https://doi.org/10.1038/s41561-019-0300-3 Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J Int 46:647–667. https://doi.org/10.1111/j.1365-246X.1976.tb01252.x Fausto RS, Box JE, Vandecrux B, Van As D, Steffen K, Macferrin MJ, Machguth H, Colgan W, Koenig LS, McGrath D, Charalampidis C, Braithwaite RJ (2018) A snow density dataset for improving surface boundary conditions in Greenland ice sheet firn modeling. Front Earth Sci. https://doi.org/10.3929/ethz-b-000268508 Felikson D, Urban TJ, Gunter BC, Pie N, Pritchard HD, Harpold R, Schutz BE (2017) Comparison of elevation change detection methods from ICESat altimetry over the greenland ice sheet. IEEE Trans Geosci Remote Sens 55:5494–5505. https://doi.org/10.1109/TGRS.2017.2709303 Fettweis X, Box JE, Agosta C, Amory C, Kittel C, Lang C, van As D, Machguth H, Gallée H (2017) Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11:1015–1033. https://doi.org/10.5194/tc-11-1015-2017 Fettweis X, Hofer S, Krebs-Kanzow U, Amory C, Aoki T, Berends CJ, Born A, Box JE, Delhasse A, Fujita K, Gierz P, Goelzer H, Hanna E, Hashimoto A, Huybrechts P, Kapsch ML, King MD, Kittel C, Lang C, Langen PL, Lenaerts JTM, Liston GE, Lohmann G, Mernild SH, Mikolajewicz U, Modali K, Mottram RH, Niwano M, Noël B, Ryan JC, Smith A, Streffing J, Tedesco M, van de Berg WJ, van den Broeke M, van de Wal RSW, van Kampenhout L, Wilton D, Wouters B, Ziemen F, Zolles T (2020) GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere 14:3935–3958. https://doi.org/10.5194/tc-14-3935-2020 Flament T, Rémy F (2012) Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J Glaciol 58:830–840. https://doi.org/10.3189/2012JoG11J118 Forsberg R, Sørensen L, Simonsen S (2017) Greenland and Antarctica ice sheet mass changes and effects on global sea level. Surv Geophys 38:89–104. https://doi.org/10.1007/s10712-016-9398-7 Fox Maule CF, Purucker ME, Olsen N, Mosegaard K (2005) Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309:464–467. https://doi.org/10.1126/science.1106888 Fox-Kemper B, Hewitt HT, Xiao C, Aðalgeirsdóttir G, Drijfhout SS, Edwards TL, Golledge NR, Hemer M, Kopp RE, Krinner G, Mix A, Notz D, Nowicki S, Nurhati IS, Ruiz L, Sallée J-B, Slangen ABA, Yu Y (2021) Ocean, cryosphere and sea level change. Cambridge University Press, Cambridge Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393. https://doi.org/10.5194/tc-7-375-2013 Fricker HA, Coleman R, Padman L, Scambos TA, Bohlander J, Brunt KM (2009) Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarct Sci 21:515–532. https://doi.org/10.1017/S095410200999023X Fyke J, Sergienko O, Löfverström M, Price S, Lenaerts JTM (2018) An overview of interactions and feedbacks between ice sheets and the earth system. Rev Geophys 56:361–408. https://doi.org/10.1029/2018RG000600 Gardner AS, Moholdt G, Scambos T, Fahnstock M, Ligtenberg S, van den Broeke M, Nilsson J (2018) Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12:521–547. https://doi.org/10.5194/tc-12-521-2018 Gillet-Chaulet F, Gagliardini O, Seddik H, Nodet M, Durand G, Ritz C, Zwinger T, Greve R, Vaughan DG (2012) Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere 6:1561–1576 Goelzer H, Robinson A, Seroussi H, van de Wal RSW (2017) Recent progress in Greenland ice sheet modelling. Curr Clim Change Rep 3:291–302. https://doi.org/10.1007/s40641-017-0073-y Goelzer H, Nowicki S, Payne A, Larour E, Seroussi H, Lipscomb WH, Gregory J, Abe-Ouchi A, Shepherd A, Simon E, Agosta C, Alexander P, Aschwanden A, Barthel A, Calov R, Chambers C, Choi Y, Cuzzone J, Dumas C, Edwards T, Felikson D, Fettweis X, Golledge NR, Greve R, Humbert A, Huybrechts P, Le clec’h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N. J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., van den Broeke, M. (2020) The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14:3071–3096. https://doi.org/10.5194/tc-14-3071-2020 Golledge NR, Keller ED, Gomez N, Naughten KA, Bernales J, Trusel LD, Edwards TL (2019) Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566:65–72. https://doi.org/10.1038/s41586-019-0889-9 Gomez N, Mitrovica JX, Huybers P, Clark PU (2010) Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nat Geosci 3:850–853. https://doi.org/10.1038/ngeo1012 Groh A, Horwath M (2021) Antarctic ice mass change products from GRACE/GRACE-FO using tailored sensitivity kernels. Remote Sens 13:1736. https://doi.org/10.3390/rs13091736 Groh A, Horwath M, Horvath A, Meister R, Sørensen LS, Barletta VR, Forsberg R, Wouters B, Ditmar P, Ran J, Klees R, Su X, Shang K, Guo J, Shum CK, Schrama E, Shepherd A (2019) Evaluating GRACE mass change time series for the Antarctic and Greenland ice sheet—methods and results. Geosciences 9:21. https://doi.org/10.3390/geosciences9100415 Gudmundsson GH, Paolo FS, Adusumilli S, Fricker HA (2019) Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys Res Lett 46:13903–13909. https://doi.org/10.1029/2019GL085027 Haagmans R, Siemes C, Massotti L, Carraz O, Silvestrin P (2020) ESA’s next-generation gravity mission concepts, Rendiconti Lincei. Scienze Fisiche e Naturali 31:15–25. https://doi.org/10.1007/s12210-020-00875-0 Hanna E, Cappelen J, Fettweis X, Mernild SH, Mote TL, Mottram R, Steffen K, Ballinger TJ, Hall RJ (2020) Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int J Climatol 41:E1336–E1352. https://doi.org/10.1002/joc.6771 Hogg AE, Shepherd A, Gilbert L, Muir A, Drinkwater MR (2018) Mapping ice sheet grounding lines with CryoSat-2. Adv Space Res 62:1191–1202. https://doi.org/10.1016/j.asr.2017.03.008 Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci 1:659–664. https://doi.org/10.1038/ngeo316 Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177:849–864. https://doi.org/10.1111/j.1365-246X.2009.04139.x Horwath M, Legrésy B, Rémy F, Blarel F, Lemoine JM (2012) Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys J Int 189:863–876. https://doi.org/10.1111/j.1365-246X.2012.05401.x Howat IM, Eddy A (2011) Multi-decadal retreat of Greenland’s marine-terminating glaciers. J Glaciol 57:389–396. https://doi.org/10.3189/002214311796905631 Howat IM, Porter C, Smith BE, Noh MJ, Morin P (2019) The reference elevation model of Antarctica. Cryosphere 13:665–674. https://doi.org/10.5194/tc-13-665-2019 Howat I, Negrete A, Smith B (2015) MEaSUREs Greenland Ice mapping project (GIMP) digital elevation model, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA Hsu C-W, Velicogna I (2017) Detection of sea level fingerprints derived from GRACE gravity data. Geophys Res Lett 44:8953–8961. https://doi.org/10.1002/2017GL074070 Jäggi A, Meyer U, Lasser M, et al (2020) International combination service for time-variable gravity fields (COST-G). In: International association of geodesy symposia. Springer Berlin, Heidelberg Jenkins A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J Phys Oceanogr 41:2279–2294. https://doi.org/10.1175/JPO-D-11-03.1 Joughin I (2002) Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann Glaciol 34:195–201. https://doi.org/10.3189/172756402781817978 Joughin I, Howat IM, Fahnestock M, Smith B, Krabill W, Alley RB, Stern H, Truffer M (2008) Continued evolution of Jakobshavn Isbrae following its rapid speedup. J Geophys Res Earth Surf. https://doi.org/10.1029/2008JF001023 Joughin I, Alley RB, Holland DM (2012) Ice-sheet response to oceanic forcing. Science 338:1172–1176. https://doi.org/10.1126/science.1226481 Joughin I, Smith BE, Medley B (2014a) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344:735–738. https://doi.org/10.1126/science.1249055 Joughin I, Smith BE, Shean DE, Floricioiu D (2014b) Brief communication: further summer speedup of Jakobshavn Isbræ. Cryosphere 8:209–214. https://doi.org/10.5194/tc-8-209-2014 Joughin I, Shean DE, Smith BE, Dutrieux P (2016) Grounding line variability and subglacial lake drainage on Pine Island Glacier, Antarctica. Geophys Res Lett 43:9093–9102. https://doi.org/10.1002/2016GL070259 Joughin I, Smith B, Howat I, Scambos T (2010) MEaSUREs Greenland ice sheet velocity map from InSAR Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center Jourdain NC, Asay-Davis X, Hattermann T, Straneo F, Seroussi H, Little CM, Nowicki S (2020) A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. Cryosphere 14:3111–3134. https://doi.org/10.5194/tc-14-3111-2020 Kappelsberger MT, Strößenreuther U, Scheinert M, Horwath M, Groh A, Knöfel C, Lunz S, Khan SA (2021) Modeled and observed bedrock displacements in North-East Greenland using refined estimates of present-day ice-mass changes and densified GNSS measurements. J Geophys Res Earth Surf 126:e2020JF005860. https://doi.org/10.1029/2020JF005860 Karlsson NB, Solgaard AM, Mankoff KD, Gillet-Chaulet F, MacGregor JA, Box JE, Citterio M, Colgan WT, Larsen SH, Kjeldsen KK, Korsgaard NJ, Benn DI, Hewitt IJ, Fausto RS (2021) A first constraint on basal melt-water production of the Greenland ice sheet. Nat Commun 12:3461. https://doi.org/10.1038/s41467-021-23739-z Khazendar A, Rignot E, Schroeder DM, Seroussi H, Schodlok MP, Scheuchl B, Mouginot J, Sutterley TC, Velicogna I (2016) Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica. Nat Commun 7:13243. https://doi.org/10.1038/ncomms13243 Khazendar A, Fenty IG, Carroll D, Gardner A, Lee CM, Fukumori I, Wang O, Zhang H, Seroussi H, Moller D, Noël BPY, van den Broeke MR, Dinardo S, Willis J (2019) Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nat Geosci 12:277–283. https://doi.org/10.1038/s41561-019-0329-3 King MD, Howat IM, Jeong S, Noh MJ, Wouters B, Noël B, van den Broeke MR (2018) Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. Cryosphere 12:3813–3825. https://doi.org/10.5194/tc-12-3813-2018 King MD, Howat IM, Candela SG, Noh MJ, Jeong S, Noël BPY, van den Broeke MR, Wouters B, Negrete A (2020) Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun Earth Environ 1:1. https://doi.org/10.1038/s43247-020-0001-2 Koenig LS, Ivanoff A, Alexander PM, MacGregor JA, Fettweis X, Panzer B, Paden JD, Forster RR, Das I, McConnell JR, Tedesco M, Leuschen C (2016) Annual Greenland accumulation rates (2009–2012) from airborne snow radar. https://doi.org/10.7916/D8X07KHT Konrad H, Sasgen I, Pollard D, Klemann V (2015) Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Planet Sci Lett 432:254–264. https://doi.org/10.1016/j.epsl.2015.10.008 Konrad H, Gilbert L, Cornford SL, Payne A, Hogg A, Muir A, Shepherd A (2017) Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica: drawdown in the Amundsen Sea Embayment. Geophys Res Lett 44:910–918. https://doi.org/10.1002/2016GL070733 Kuipers Munneke P, Ligtenberg SRM, Noël BPY, Howat IM, Box JE, Mosley-Thompson E, McConnell JR, Steffen K, Harper JT, Das SB, van den Broeke MR (2015) Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere 9:2009–2025. https://doi.org/10.5194/tc-9-2009-2015 Kulp SA, Strauss BH (2019) New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat Commun 10:4844. https://doi.org/10.1038/s41467-019-12808-z Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geodesy 83:903–913. https://doi.org/10.1007/s00190-009-0308-3 Kvas A, Behzadpour S, Ellmer M, Klinger B, Strasser S, Zehentner N, Mayer-Gürr T (2019) ITSG-Grace2018: overview and evaluation of a new GRACE-only gravity field time series. J Geophys Res Solid Earth. https://doi.org/10.1029/2019JB017415 Landerer FW, Flechtner FM, Save H, Webb FH, Bandikova T, Bertiger WI, Bettadpur SV, Byun SH, Dahle C, Dobslaw H, Fahnestock E, Harvey N, Kang Z, Kruizinga GLH, Loomis BD, McCullough C, Murböck M, Nagel P, Paik M, Pie N, Poole S, Strekalov D, Tamisiea ME, Wang F, Watkins MM, Wen HY, Wiese DN, Yuan DN (2020) Extending the global mass change data record: GRACE follow-on instrument and science data performance. Geophys Res Lett 47:e2020G088306. https://doi.org/10.1029/2020GL088306 Langen PL, Fausto RS, Vandecrux B, Mottram RH, Box JE (2017) Liquid water flow and retention on the greenland ice sheet in the regional climate model HIRHAM5: local and large-scale impacts. Front Earth Sci. https://doi.org/10.3389/feart.2016.00110 Larour E, Morlighem M, Seroussi H, Schiermeier J, Rignot E (2012) Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. J Geophys Res Earth Surf. https://doi.org/10.1029/2012JF002371 Larour E, Seroussi H, Adhikari S, Ivins E, Caron L, Morlighem M, Schlegel N (2019) Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science 364:eaav7908. https://doi.org/10.1126/science.aav7908 Le Brocq AM, Ross N, Griggs JA, Bingham RG, Corr HFJ, Ferraccioli F, Jenkins A, Jordan TA, Payne AJ, Rippin DM, Siegert MJ (2013) Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat Geosci 6:945–948. https://doi.org/10.1038/ngeo1977 Leeson AA, Shepherd A, Briggs K, Howat I, Fettweis X, Morlighem M, Rignot E (2015) Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat Clim Chang 5:51–55. https://doi.org/10.1038/nclimate2463 Lenaerts JTM, Medley B, Broeke MR, Wouters B (2019) Observing and modeling ice sheet surface mass balance. Rev Geophys 57:376–420. https://doi.org/10.1029/2018RG000622 Levermann A, Winkelmann R, Albrecht T, Goelzer H, Golledge NR, Greve R, Huybrechts P, Jordan J, Leguy G, Martin D, Morlighem M, Pattyn F, Pollard D, Quiquet A, Rodehacke C, Seroussi H, Sutter J, Zhang T, Van Breedam J, Calov R, DeConto R, Dumas C, Garbe J, Gudmundsson GH, Hoffman MJ, Humbert A, Kleiner T, Lipscomb WH, Meinshausen M, Ng E, Nowicki SMJ, Perego M, Price SF, Saito F, Schlegel NJ, Sun S, van de Wal RSW (2020) Projecting Antarctica’s contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth Syst Dyn 11:35–76. https://doi.org/10.5194/esd-11-35-2020 Lhermitte S, Sun S, Shuman C, Wouters B, Pattyn F, Wuite J, Berthier E, Nagler T (2020) Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proc Natl Acad Sci 117:24735–24741. https://doi.org/10.1073/pnas.1912890117 Ligtenberg SRM, Kuipers Munneke P, van den Broeke MR (2014) Present and future variations in Antarctic firn air content. Cryosphere 8:1711–1723. https://doi.org/10.5194/tc-8-1711-2014 Loomis BD, Luthcke SB, Sabaka TJ (2019a) Regularization and error characterization of GRACE mascons. J Geodesy 93:1381–1398. https://doi.org/10.1007/s00190-019-01252-y Loomis BD, Rachlin KE, Luthcke SB (2019b) Improved earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys Res Lett 46:6910–6917. https://doi.org/10.1029/2019GL082929 Lucas-Picher P, Wulff-Nielsen M, Christensen JH, Aðalgeirsdóttir G, Mottram R, Simonsen SB (2012) Very high resolution regional climate model simulations over Greenland: identifying added value. J Geophys Res Atmosp. https://doi.org/10.1029/2011JD016267 Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land ice evolution from an iterated GRACE global mascon solution. J Glac 59(216):613–631. https://doi.org/10.3189/2013jJoG12j147 Macferrin M, Machguth H, As DV, Charalampidis C, Stevens CM, Heilig A, Vandecrux B, Langen PL, Mottram R, Fettweis X, Broeke MRVD, Pfeffer WT, Moussavi MS, Abdalati W (2019) Rapid expansion of Greenland’s low-permeability ice slabs. Nature 573:403–407. https://doi.org/10.1038/s41586-019-1550-3 MacGregor JA, Fahnestock MA, Catania GA, Aschwanden A, Clow GD, Colgan WT, Gogineni SP, Morlighem M, Nowicki SMJ, Paden JD, Price SF, Seroussi H (2016) A synthesis of the basal thermal state of the Greenland Ice Sheet. J Geophys Res Earth Surf 121:1328–1350. https://doi.org/10.1002/2015JF003803 Machguth H, MacFerrin M, van As D, Box JE, Charalampidis C, Colgan W, Fausto RS, Meijer HAJ, Mosley-Thompson E, van de Wal RSW (2016) Greenland meltwater storage in firn limited by near-surface ice formation. Nat Clim Chang 6:390. https://doi.org/10.1038/nclimate2899 Mankoff KD, Tulaczyk SM (2017) The past, present, and future viscous heat dissipation available for Greenland subglacial conduit formation. Cryosphere 11:303–317. https://doi.org/10.5194/tc-11-303-2017 Mankoff KD, Solgaard A, Colgan W, Ahlstrøm AP, Khan SA, Fausto RS (2020) Greenland Ice Sheet solid ice discharge from 1986 through March 2020. Earth Syst Sci Data 12:1367–1383. https://doi.org/10.5194/essd-12-1367-2020 Mankoff KD, Fettweis X, Langen PL, Stendel M, Kjeldsen KK, Karlsson NB, Noël B, van den Broeke MR, Solgaard A, Colgan W, Box JE, Simonsen SB, King MD, Ahlstrøm AP, Andersen SB, Fausto RS (2021) Greenland ice sheet mass balance from 1840 through next week. Earth Syst Sci Data 13:5001–5025. https://doi.org/10.5194/essd-13-5001-2021 Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, Schutz BE, Smith B, Yang Y, Zwally J (2017) The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens Environ 190:260–273. https://doi.org/10.1016/j.rse.2016.12.029 Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (2018) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Intergovermental Panel on Climate Change Mattingly KS, Mote TL, Fettweis X (2018) Atmospheric river impacts on Greenland ice sheet surface mass balance. J Geophys Res Atmosp 123:8538–8560. https://doi.org/10.1029/2018JD028714 McMillan M, Leeson A, Shepherd A, Briggs K, Armitage TWK, Hogg A, Kuipers Munneke P, van den Broeke M, Noël B, van de Berg WJ, Ligtenberg S, Horwath M, Groh A, Muir A, Gilbert L (2016) A high-resolution record of Greenland mass balance: high-resolution Greenland mass balance. Geophys Res Lett 43:7002–7010. https://doi.org/10.1002/2016GL069666 Medley B, Thomas ER (2019) Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat Clim Chang 9:34–39. https://doi.org/10.1038/s41558-018-0356-x Mercer JH (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271:321–325. https://doi.org/10.1038/271321a0 Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A, Kofinas G, Mackintosh A, Melbourne-Thomas J, Muelbert MMC, Ottersen G, Pritchard H, Schuur EAG (2019) Polar regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Intergovernmental Panel on Climate Change Moon T, Joughin I, Smith B, Howat I (2012) 21st-century evolution of Greenland outlet glacier velocities. Science 336:576–578. https://doi.org/10.1126/science.1219985 Morlighem M, Seroussi H, Larour E, Rignot E (2013) Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher-order model. J Geophys Res Earth Surf 118:1746–1753. https://doi.org/10.1002/jgrf.20125 Morlighem M, Williams CN, Rignot E, An L, Arndt JE, Bamber JL, Catania G, Chauché N, Dowdeswell JA, Dorschel B, Fenty I, Hogan K, Howat I, Hubbard A, Jakobsson M, Jordan TM, Kjeldsen KK, Millan R, Mayer L, Mouginot J, Noël BPY, O’Cofaigh C, Palmer S, Rysgaard S, Seroussi H, Siegert MJ, Slabon P, Straneo F, van den Broeke MR, Weinrebe W, Wood M, Zinglersen KB (2017) BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland From Multibeam Echo Sounding combined with mass conservation. Geophys Res Lett 44:11051–11061. https://doi.org/10.1002/2017gl074954 Morlighem M, Rignot E, Binder T, Blankenship D, Drews R, Eagles G, Eisen O, Ferraccioli F, Forsberg R, Fretwell P, Goel V, Greenbaum JS, Gudmundsson H, Guo J, Helm V, Hofstede C, Howat I, Humbert A, Jokat W, Karlsson NB, Lee WS, Matsuoka K, Millan R, Mouginot J, Paden J, Pattyn F, Roberts J, Rosier S, Ruppel A, Seroussi H, Smith EC, Steinhage D, Sun B, Broeke MR, v. d., Ommen, T. D. v., Wessem, M. v., Young, D. A. (2020) Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat Geosci 13:132–137. https://doi.org/10.1038/s41561-019-0510-8 Mote TL (2007) Greenland surface melt trends 1973–2007: evidence of a large increase in 2007. Geophys Res Lett. https://doi.org/10.1029/2007GL031976 Mottram RB, Simonsen S, Høyer Svendsen S, Barletta VR, Sandberg Sørensen L, Nagler T, Wuite J, Groh A, Horwath M, Rosier J, Solgaard A, Hvidberg CS, Forsberg R (2019) An integrated view of Greenland Ice Sheet mass changes based on models and satellite observations. Remote Sens 11:1407. https://doi.org/10.3390/rs11121407 Mottram R, Hansen N, Kittel C, van Wessem JM, Agosta C, Amory C, Boberg F, van de Berg WJ, Fettweis X, Gossart A, van Lipzig NPM, van Meijgaard E, Orr A, Phillips T, Webster S, Simonsen SB, Souverijns N (2021) What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15:3751–3784. https://doi.org/10.5194/tc-15-3751-2021 Mouginot J, Rignot E, Scheuchl B (2014) Sustained increase in ice discharge fromthe Amundsen Sea Embayment, West Antarctica, from1973 to 2013. Geophys Res Lett 41:1576–1584. https://doi.org/10.1002/2013GL059069 Mouginot J, Rignot E, Bjørk AA, van den Broeke M, Millan R, Morlighem M, Noël B, Scheuchl B, Wood M (2019a) Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc Natl Acad Sci 116:9239–9244. https://doi.org/10.1073/pnas.1904242116 Mouginot J, Rignot E, Scheuchl B (2019b) Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophys Res Lett 46:9710–9718. https://doi.org/10.1029/2019GL083826 Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT (2018) Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc Natl Acad Sci 115:2022–2025. https://doi.org/10.1073/pnas.1717312115 Nilsson J, Vallelonga P, Simonsen SB, Sørensen LS, Forsberg R, Dahl-Jensen D, Hirabayashi M, Goto-Azuma K, Hvidberg CS, Kjaer HA, Satow K (2015) Greenland 2012 melt event effects on CryoSat-2 radar altimetry: effect of Greenland melt on cryosat-2. Geophys Res Lett 42:3919–3926. https://doi.org/10.1002/2015GL063296 Noël B, van de Berg WJ, van Wessem JM, van Meijgaard E, van As D, Lenaerts JTM, Lhermitte S, Kuipers Munneke P, Smeets CJPP, van Ulft LH, van de Wal RSW, van den Broeke MR (2018) Modelling the climate and surface mass balance of polar ice sheets using RACMO2—part 1: Greenland (1958–2016). Cryosphere 12:811–831. https://doi.org/10.5194/tc-12-811-2018 Noël B, van Kampenhout L, Lenaerts JTM, van de Berg WJ, van den Broeke MR (2021) A 21st century warming threshold for sustained Greenland Ice sheet mass loss. Geophys Res Lett 48:e2020GL090471. https://doi.org/10.1029/2020GL090471 Nowicki S, Seroussi H (2018) Projections of future sea level contributions from the Greenland and Antarctic Ice Sheets: challenges beyond dynamical ice sheet modeling. Oceanography 31:8. https://doi.org/10.5670/oceanog.2018.216 Nowicki SMJ, Payne A, Larour E, Seroussi H, Goelzer H, Lipscomb W, Gregory J, Abe-Ouchi A, Shepherd A (2016) Ice sheet model intercomparison project (ISMIP6) contribution to CMIP6. Geosci Model Dev 9:4521–4545. https://doi.org/10.5194/gmd-9-4521-2016 Nowicki S, Goelzer H, Seroussi H, Payne AJ, Lipscomb WH, Abe-Ouchi A, Agosta C, Alexander P, Asay-Davis XS, Barthel A, Bracegirdle TJ, Cullather R, Felikson D, Fettweis X, Gregory JM, Hattermann T, Jourdain NC, Kuipers Munneke P, Larour E, Little CM, Morlighem M, Nias I, Shepherd A, Simon E, Slater D, Smith RS, Straneo F, Trusel LD, van den Broeke MR, van de Wal R (2020) Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14:2331–2368. https://doi.org/10.5194/tc-14-2331-2020 Otosaka I, Shepherd A, McMillan M (2019) Ice sheet elevation change in West Antarctica from Ka-band satellite radar altimetry. Geophys Res Lett 6:13135–13143. https://doi.org/10.1029/2019GL084271 Otosaka IN, Shepherd A, Casal TGD, Coccia A, Davidson M, Di Bella A, Fettweis X, Forsberg R, Helm V, Hogg AE, Hvidegaard SM, Lemos A, Macedo K, Kuipers Munneke P, Parrinello T, Simonsen SB, Skourup H, Sørensen LS (2020) Surface melting drives fluctuations in airborne radar penetration in West Central Greenland. Geophys Res Lett 47:e2020GL088293. https://doi.org/10.1029/2020gl088293 Otosaka IN, Shepherd A, Ivins ER, Schlegel N-J, Amory C, van den Broeke MR, Horwath M, Joughin I, King MD, Krinner G, Nowicki S, Payne AJ, Rignot E, Scambos T, Simon KM, Smith BE, Sørensen LS, Velicogna I, Whitehouse PL, Agosta C, Ahlstrøm AP, Blazquez A, Colgan W, Engdahl ME, Fettweis X, Forsberg R, Gallée H, Gardner A, Gilbert L, Gourmelen N, Groh A, Gunter BC, Harig C, Helm V, Khan SA, Kittel C, Konrad H, Langen PL, Lecavalier BS, Liang C-C, Loomis BD, McMillan M, Melini D, Mernild SH, Mottram R, Mouginot J, Nilsson J, Noël B, Pattle ME, Peltier WR, Pie N, Roca M, Sasgen I, Save HV, Seo K-W, Scheuchl B, Schrama EJO, Schröder L, Simonsen SB, Slater T, Spada G, Sutterley TC, Vishwakarma BD, van Wessem JM, Wiese D, van der Wal W, Wouters B (2023) Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst Sci Data 15:1597–1616. https://doi.org/10.5194/essd-15-1597-2023 Otosaka I, Shepherd A, Groh A (2021) Changes in Northwest Greenland Ice Sheet Elevation and Mass, EGU General Assembly 2021. https://doi.org/10.5194/egusphere-egu21-2480 Palm SP, Yang Y, Spinhirne JD, Marshak A (2011) Satellite remote sensing of blowing snow properties over Antarctica. J Geophys Res Atmosp. https://doi.org/10.1029/2011JD015828 Paolo FS, Fricker HA, Padman L (2015) Volume loss from Antarctic ice shelves is accelerating. Science 348:327–331. https://doi.org/10.1126/science.aaa0940 Park JW, Gourmelen N, Shepherd A, Kim SW, Vaughan DG, Wingham DJ (2013) Sustained retreat of the Pine Island Glacier. Geophys Res Lett 40:2137–2142. https://doi.org/10.1002/grl.50379 Pattyn F (2010) Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet Sci Lett 295:451–461. https://doi.org/10.1016/j.epsl.2010.04.025 Pattyn F, Perichon L, Aschwanden A, Breuer B, de Smedt B, Gagliardini O, Gudmundsson GH, Hindmarsh RCA, Hubbard A, Johnson JV, Kleiner T, Konovalov Y, Martin C, Payne AJ, Pollard D, Price S, Rückamp M, Saito F, Souček O, Sugiyama S, Zwinger T (2008) Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM). Cryosphere 2:95–108. https://doi.org/10.5194/tc-2-95-2008 Pattyn F, Schoof C, Perichon L, Hindmarsh RCA, Bueler E, de Fleurian B, Durand G, Gagliardini O, Gladstone R, Goldberg D, Gudmundsson GH, Huybrechts P, Lee V, Nick FM, Payne AJ, Pollard D, Rybak O, Saito F, Vieli A (2012) Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. Cryosphere 6:573–588. https://doi.org/10.5194/tc-6-573-2012 Pattyn F, Favier L, Sun S, Durand G (2017) Progress in numerical modeling of Antarctic ice-sheet dynamics. Curr Clim Change Rep 3:174–184. https://doi.org/10.1007/s40641-017-0069-7 Payne AJ, Nowicki S, Abe-Ouchi A, Agosta C, Alexander P, Albrecht T, Asay-Davis X, Aschwanden A, Barthel A, Bracegirdle TJ, Calov R, Chambers C, Choi Y, Cullather R, Cuzzone J, Dumas C, Edwards TL, Felikson D, Fettweis X, Galton-Fenzi BK, Goelzer H, Gladstone R, Golledge NR, Gregory JM, Greve R, Hattermann T, Hoffman MJ, Humbert A, Huybrechts P, Jourdain NC, Kleiner T, Munneke PK, Larour E, Le clec’h S, Lee V, Leguy G, Lipscomb WH, Little CM, Lowry DP, Morlighem M, Nias I, Pattyn F, Pelle T, Price SF, Quiquet A, Reese R, Rückamp M, Schlegel N-J, Seroussi H, Shepherd A, Simon E, Slater D, Smith RS, Straneo F, Sun S, Tarasov L, Trusel LD, Van Breedam J, van de Wal R, van den Broeke M, Winkelmann R, Zhao C, Zhang T, Zwinger T (2021) Future sea level change under coupled model intercomparison project phase 5 and phase 6 scenarios from the Greenland and Antarctic Ice Sheets. Geophys Res Lett 48:e2020GL091741. https://doi.org/10.1029/2020GL091741 Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. https://doi.org/10.1146/annurev.earth.32.082503.144359 Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975. https://doi.org/10.1038/nature08471 Rémy F, Flament T, Michel A, Verron J (2014) Ice sheet survey over Antarctica using satellite altimetry: ERS-2, Envisat, SARAL/AltiKa, the key importance of continuous observations along the same repeat orbit. Int J Remote Sens 35:5497–5512. https://doi.org/10.1080/01431161.2014.926419 Rémy F, Flament T, Michel A, Blumstein D (2015) Envisat and SARAL/AltiKa observations of the Antarctic Ice Sheet: A comparison between the Ku-band and Ka-band. Mar Geodesy 38:510–521. https://doi.org/10.1080/01490419.2014.985347 Ridley JK, Partington K (1988) A model of satellite radar altimeter return from ice sheets. Remote Sens 9:601–624. https://doi.org/10.1080/01431168808954881 Rignot E (1996) Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry. J Glaciol 42:476–485. https://doi.org/10.3189/S0022143000003464 Rignot E (2008) Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys Res Lett 35:L12505. https://doi.org/10.1029/2008GL033365 Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. https://doi.org/10.1029/2004GL020697 Rignot E, Mouginot J, Scheuchl B (2011a) Antarctic grounding line mapping from differential satellite radar interferometry. Geophys Res Lett. https://doi.org/10.1029/2011GL047109 Rignot E, Mouginot J, Scheuchl B (2011b) MEaSUREs InSAR-based Antarctica Ice velocity map NASA DAAC at the national snow and ice data center. Boulder Colorado. https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0484.001 Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys Res Lett 41:3502–3509. https://doi.org/10.1002/2014GL060140 Rignot E, Mouginot J, Scheuchl B, van den Broeke M, van Wessem MJ, Morlighem M (2019) Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc Natl Acad Sci USA 116:1095–1103. https://doi.org/10.1073/pnas.1812883116 Ritz C, Edwards TL, Durand G, Payne AJ, Peyaud V, Hindmarsh RCA (2015) Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528:115–118. https://doi.org/10.1038/nature16147 Roemer S, Legrésy B, Horwath M, Dietrich R (2007) Refined analysis of radar altimetry data applied to the region of the subglacial Lake Vostok/Antarctica. Remote Sens Environ 106:269–284. https://doi.org/10.1016/j.rse.2006.02.026 Sasgen I, Konrad H, Helm V, Grosfeld K (2019) High-resolution mass trends of the Antarctic ice sheet through a spectral combination of Satellite Gravimetry and Radar Altimetry Observations. Remote Sens. https://doi.org/10.3390/rs11020144 Save H, Bettadpur S, Tapley BD (2016) High-resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121:7547–7569 Scambos TA, Bohlander JA, Shuman CA, Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment Antarctica. Geophys Res Lett. https://doi.org/10.1029/2004GL020670 Scheinert M, Engels O, Schrama EJ, van der Wal W, Horwath M (2023) Geodetic observations for constraining mantle processes in Antarctica. Geol Soc London Memoirs 56(1):295–313. https://doi.org/10.1144/M56-2021-22 Schmidtko S, Heywood KJ, Thompson AF, Aoki S (2014) Multidecadal warming of Antarctic waters. Science 346:1227–1231. https://doi.org/10.1126/science.1256117 Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res Earth Surface. https://doi.org/10.1029/2006JF000664 Schröder L, Horwath M, Dietrich R, Helm V, van den Broeke MR, Ligtenberg SRM (2019) Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry. Cryosphere 13:427–449. https://doi.org/10.5194/tc-11-1111-2017 Seroussi H, Nakayama Y, Larour E, Menemenlis D, Morlighem M, Rignot E, Khazendar A (2017) Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys Res Lett 44:6191–6199. https://doi.org/10.1002/2017GL072910 Seroussi H, Nowicki S, Payne AJ, Goelzer H, Lipscomb WH, Abe-Ouchi A, Agosta C, Albrecht T, Asay-Davis X, Barthel A, Calov R, Cullather R, Dumas C, Galton-Fenzi BK, Gladstone R, Golledge NR, Gregory JM, Greve R, Hattermann T, Hoffman MJ, Humbert A, Huybrechts P, Jourdain NC, Kleiner T, Larour E, Leguy GR, Lowry DP, Little CM, Morlighem M, Pattyn F, Pelle T, Price SF, Quiquet A, Reese R, Schlegel NJ, Shepherd A, Simon E, Smith RS, Straneo F, Sun S, Trusel LD, Van Breedam J, van de Wal RSW, Winkelmann R, Zhao C, Zhang T, Zwinger T (2020) ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14:3033–3070. https://doi.org/10.5194/tc-14-3033-2020 Shapiro NM, Ritzwoller MH (2004) Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet Sci Lett 223:213–224. https://doi.org/10.1016/j.epsl.2004.04.011 Shepherd A, Ivins ER, Barletta GAVR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Jan TML, Li J, Stefan RML, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sørensen LS, Scambos TA, Scheuchl B, Ernst JOS, Smith B, Sundal AV, Jan HVA, Willem JVDB, Michiel RVDB, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of Ice-Sheet mass balance. Sci 338(6111):1183–1189. https://doi.org/10.1126/science.1228102 Shepherd A, Nowicki S (2017) Improvements in ice-sheet sea-level projections. Nat Clim Chang 7:672–674. https://doi.org/10.1038/nclimate3400 Shepherd A, Wingham DJ, Mansley JAD (2002) Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys Res Lett 29:1362–1364. https://doi.org/10.1126/science.291.5505.862 Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I, Whitehouse P, Briggs K, Joughin I, Krinner G, Nowicki S, Payne T, Scambos T, Schlegel NAG, Agosta C, Ahlstrøm A, Babonis G, Barletta V, Blazquez A, Bonin J, Csatho B, Cullather R, Felikson D, Fettweis X, Forsberg R, Gallee H, Gardner A, Gilbert L, Groh A, Gunter B, Hanna E, Harig C, Helm V, Horvath A, Horwath M, Khan S, Kjeldsen KK, Konrad H, Langen PL, Lecavalier B, Loomis B, Luthcke S, McMillan M, Melini D, Mernild S, Mohajerani Y, Moore P, Mouginot J, Moyano G, Muir A, Nagler T, Nield G, Nilsson J, Noel B, Otosaka I, Pattle ME, Peltier WR, Pie N, Rietbroek R, Rott H, Sandberg-Sørensen L, Sasgen I, Save H, Scheuchl B, Schrama E, Schröder L, Seo K-W, Simonsen S, Slater T, Spada G, Sutterley T, Talpe M, Tarasov L, van de Berg WJ, van der Wal W, van Wessem M, Vishwakarma BD, Wiese D, Wouters B (2018) Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558:219–222. https://doi.org/10.1038/s41586-018-0179-y Shepherd A, Gilbert L, Muir AS, Konrad H, McMillan M, Slater T, Briggs KH, Sundal AV, Hogg AE, Engdahl M (2019) Trends in Antarctic ice sheet elevation and mass. Geophys Res Lett 46:8174–8183. https://doi.org/10.1029/2019GL082182 Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I, Whitehouse P, Briggs K, Joughin I, Krinner G, Nowicki S, Payne T, Scambos T, Schlegel N, Agosta C, Ahlstrøm A, Babonis G, Barletta VR, Bjørk AA, Blazquez A, Bonin J, Colgan W, Csatho B, Cullather R, Engdahl ME, Felikson D, Fettweis X, Forsberg R, Hogg AE, Gallee H, Gardner A, Gilbert L, Gourmelen N, Groh A, Gunter B, Hanna E, Harig C, Helm V, Horvath A, Horwath M, Khan S, Kjeldsen KK, Konrad H, Langen PL, Lecavalier B, Loomis B, Luthcke S, McMillan M, Melini D, Mernild S, Mohajerani Y, Moore P, Mottram R, Mouginot J, Moyano G, Muir A, Nagler T, Nield G, Nilsson J, Noël B, Otosaka I, Pattle ME, Peltier WR, Pie N, Rietbroek R, Rott H, Sandberg Sørensen L, Sasgen I, Save H, Scheuchl B, Schrama E, Schröder L, Seo K-W, Simonsen SB, Slater T, Spada G, Sutterley T, Talpe M, Tarasov L, van de Berg WJ, van der Wal W, van Wessem M, Vishwakarma BD, Wiese D, Wilton D, Wagner T, Wouters B, Wuite J (2020) Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579:233–239. https://doi.org/10.1038/s41586-019-1855-2 Simonsen SB, Sorensen LS (2017) Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry. Remote Sens Environ 190:207–216. https://doi.org/10.1016/j.rse.2016.12.012 Simonsen SB, Stenseng L, Ađalgeirsdóttir G, Fausto RS, Hvidberg CS, Lucas-Picher P (2013) Assessing a multilayered dynamic firn-compaction model for Greenland with ASIRAS radar measurements. J Glaciol 59:545–558. https://doi.org/10.3189/2013JoG12J158 Simonsen SB, Barletta VR, Colgan WT, Sørensen LS (2021) Greenland ice sheet mass balance (1992–2020) from calibrated radar altimetry. Geophys Res Lett 48:e2020GL091216. https://doi.org/10.1029/2020GL091216 Slater T, Shepherd A, McMillan M, Armitage TWK, Otosaka I, Arthern RJ (2019) Compensating changes in the penetration depth of pulse-limited radar altimetry over the greenland ice sheet. IEEE Trans Geosci Remote Sens 57:9633–9642. https://doi.org/10.1109/TGRS.2019.2928232 Slater T, Hogg AE, Mottram R (2020) Ice-sheet losses track high-end sea-level rise projections. Nat Clim Chang 10:879–881. https://doi.org/10.1038/s41558-020-0893-y Smith B, Fricker HA, Gardner AS, Medley B, Nilsson J, Paolo FS, Holschuh N, Adusumilli S, Brunt K, Csatho B, Harbeck K, Markus T, Neumann T, Siegfried MR, Zwally HJ (2020) Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368:1239–1242. https://doi.org/10.1126/science.aaz5845 Smith BE, Medley B, Fettweis X, Sutterley T, Alexander P, Porter D, Tedesco M (2022) Evaluating Greenland surface-mass-balance and firn-densification data using ICESat-2 altimetry. Cryosp Discuss 1:24. https://doi.org/10.5194/tc-2022-44 Stibal M, Box JE, Cameron KA, Langen PL, Yallop ML, Mottram RH, Khan AL, Molotch NP, Chrismas NAM, Calì Quaglia F, Remias D, Smeets CJPP, van den Broeke MR, Ryan JC, Hubbard A, Tranter M, van As D, Ahlstrøm AP (2017) Algae DRIVE ENHANCED DARKENING OF BARE Ice on the Greenland Ice Sheet. Geophys Res Lett 44(11):463–511. https://doi.org/10.1002/2017GL075958 Sun Y, Riva R, Ditmar P (2016) Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J Geophys Res Solid Earth 121:8352–8370. https://doi.org/10.1002/2016JB013073 Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S, Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469:522–U583. https://doi.org/10.1038/nature09740 Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res Solid Earth 107(B9):ETG-3. https://doi.org/10.1029/2001JB000576 Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett. https://doi.org/10.1029/2005GL025285 Tapley BD, Watkins MM, Flechtner F, Reigber C, Bettadpur S, Rodell M, Sasgen I, Famiglietti JS, Landerer FW, Chambers DP, Reager JT, Gardner AS, Save H, Ivins ER, Swenson SC, Boening C, Dahle C, Wiese DN, Dobslaw H, Tamisiea ME, Velicogna I (2019) Contributions of GRACE to understanding climate change. Nat Clim Chang 5:358–369. https://doi.org/10.1038/s41558-019-0456-2 Turner J, Lu H, White I, King JC, Phillips T, Hosking JS, Bracegirdle TJ, Marshall GJ, Mulvaney R, Deb P (2016) Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535:411–415. https://doi.org/10.1038/nature18645 van As D, Fausto RS, PROMICE project team, (2011) Programme for monitoring of the Greenland Ice Sheet (PROMICE): first temperature and ablation records. GEUS Bull 23:73–76. https://doi.org/10.34194/geusb.v23.4876 van Wessem JM, van de Berg WJ, Noël BPY, van Meijgaard E, Amory C, Birnbaum G, Jakobs CL, Krüger K, Lenaerts JTM, Lhermitte S, Ligtenberg SRM, Medley B, Reijmer CH, van Tricht K, Trusel LD, van Ulft LH, Wouters B, Wuite J, van den Broeke MR (2018) Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 2: Antarctica (1979–2016). Cryosphere 12:1479–1498. https://doi.org/10.5194/tc-12-1479-2018 Vandecrux B, MacFerrin M, Machguth H, Colgan WT, van As D, Heilig A, Stevens CM, Charalampidis C, Fausto RS, Morris EM, Mosley-Thompson E, Koenig L, Montgomery LN, Miège C, Simonsen SB, Ingeman-Nielsen T, Box JE (2019) Firn data compilation reveals widespread decrease of firn air content in western Greenland. Cryosphere 13:845–859. https://doi.org/10.5194/tc-13-845-2019 Vaughan DG, Marshall GJ, Connolley WM et al (2003) Recent rapid regional climate warming on the antarctic peninsula. Clima Chang 60:243–274. https://doi.org/10.1023/A:1026021217991 Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40:3055–3063. https://doi.org/10.1002/grl.50527 Velicogna I, Mohajerani Y, Geruo A, Landerer F, Mouginot J, Noel B, Rignot E, Sutterley T, van den Broeke M, van Wessem JM, Wiese D (2020) Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-Onmissions. Geophys Res Lett 47:e2020GL087291. https://doi.org/10.1029/2020gl087291 Verjans V, Leeson AA, McMillan M, Stevens CM, van Wessem JM, van de Berg WJ, van den Broeke MR, Kittel C, Amory C, Fettweis X, Hansen N, Boberg F, Mottram R (2021) Uncertainty in East Antarctic firn thickness constrained using a model ensemble approach. Geophys Res Lett 48:e2020GL092060. https://doi.org/10.1029/2020GL092060 Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103:30205–30229. https://doi.org/10.1029/98JB02844 Watkins MM, Wiese DN, Yuan D-N, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth 120:2648–2671 Werder MA, Hewitt IJ, Schoof CG, Flowers GE (2013) Modeling channelized and distributed subglacial drainage in two dimensions. J Geophys Res Earth Surf 118:2140–2158. https://doi.org/10.1002/jgrf.20146 Whitehouse PL (2018) Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions. Earth Surf Dyn 6:401–429. https://doi.org/10.5194/esurf-6-401-2018 Whitehouse PL, Gomez N, King MA, Wiens DA (2019) Solid earth change and the evolution of the Antarctic Ice Sheet. Nat Commun. https://doi.org/10.1038/s41467-018-08068-y Willen MO, Horwath M, Schröder L, Groh A, Ligtenberg SRM, Kuipers Munneke P, van den Broeke MR (2020) Sensitivity of inverse glacial isostatic adjustment estimates over Antarctica. Cryosphere 14:349–366. https://doi.org/10.5194/tc-14-349-2020 Willen MO, Broerse T, Groh A, Wouters B, Kuipers Munneke P, Horwath M, van den Broeke MR, Schröder L (2021) Separating long-term and short-term mass changes of Antarctic Ice drainage basins: a coupled state space analysis of satellite observations and model products. J Geophys Res Earth Surf. https://doi.org/10.1029/2020JF005966 Willen MO, Horwath M, Groh A, Helm V, Uebbing B, Kusche J (2022) Feasibility of a global inversion for spatially resolved glacial isostatic adjustment and ice sheet mass changes proven in simulation experiments. J Geodesy 96(10):75. https://doi.org/10.1007/s00190-022-01651-8 Wilson N, Straneo F, Heimbach P (2017) Satellite-derived submarine melt rates and mass balance (2011–2015) for Greenland’s largest remaining ice tongues. Cryosphere 11:2773–2782. https://doi.org/10.5194/tc-11-2773-2017 Wingham DJ, Ridout AJ, Scharroo R, Arthern RJ, Shum CK (1998) Antarctic Elevation Change from 1992 to 1996. Science 282:456–458. https://doi.org/10.1126/science.282.5388.456 Wouters B, Bonin JA, Chambers DP, Riva REM, Sasgen I, Wahr J (2014) GRACE, time-varying gravity, Earth system dynamics and climate change. Rep Prog Phys 77:116801. https://doi.org/10.1088/0034-4885/77/11/116801 Young TJ, Christoffersen P, Bougamont M, Tulaczyk SM, Hubbard B, Mankoff KD, Nicholls KW, Stewart CL (2022) Rapid basal melting of the Greenland Ice Sheet from surface meltwater drainage. Proc Natl Acad Sci 119:2116036119. https://doi.org/10.1073/pnas.2116036119 Yuan DN (2018) JPL level-2 processing standards document for level-2 product release 06 (Rev. 6.0, June 1). GRACE Publication, pp 327–744 Zwally HJ, Bindschadler RA, Brenner AC, Major JA, Marsh JG (1989) Growth of Greenland Ice Sheet: measurement. Science 246:1587–1589. https://doi.org/10.1126/science.246.4937.1587