Markovian lifts of positive semidefinite affine Volterra-type processes

Springer Science and Business Media LLC - Tập 42 Số 2 - Trang 407-448 - 2019
Christa Cuchiero1, Josef Teichmann2
1Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria
2ETH Zürich, Rämistrasse 101, 8092, Zurich, Switzerland

Tóm tắt

Abstract We consider stochastic partial differential equations appearing as Markovian lifts of matrix-valued (affine) Volterra-type processes from the point of view of the generalized Feller property (see, e.g., Dörsek and Teichmann in A semigroup point of view on splitting schemes for stochastic (partial) differential equations, 2010. arXiv:1011.2651). We introduce in particular Volterra Wishart processes with fractional kernels and values in the cone of positive semidefinite matrices. They are constructed from matrix products of infinite dimensional Ornstein–Uhlenbeck processes whose state space is the set of matrix-valued measures. Parallel to that we also consider positive definite Volterra pure jump processes, giving rise to multivariate Hawkes-type processes. We apply these affine covariance processes for multivariate (rough) volatility modeling and introduce a (rough) multivariate Volterra Heston-type model.

Từ khóa


Tài liệu tham khảo

Abi Jaber, E., El Euch, O.: Markovian structure of the Volterra Heston model. Stat. Probab. Lett. 149, 63–72 (2019)

Abi Jaber, E., Larsson, M., Pulido, S.: Affine Volterra processes. Ann. Appl. Probab. (2019) (to appear)

Alòs, E., León, J., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11(4), 571–589 (2007)

Alòs, E., Yang, Y.: A fractional Heston model with H $$>$$1/2. Stochastics 89(1), 384–399 (2017)

Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16(6), 887–904 (2016)

Bru, M.F.: Wishart processes. J. Theor. Probab. 4(4), 725–751 (1991)

Cuchiero, C.: Affine and polynomial processes. Ph.D. thesis, ETH Zürich (2011)

Cuchiero, C., Filipović, D., Mayerhofer, E., Teichmann, J.: Affine processes on positive semidefinite matrices. Ann. Appl. Probab. 21(2), 397–463 (2011)

Cuchiero, C., Teichmann, J.: Generalized Feller processes and Markovian lifts of stochastic Volterra processes: the affine case. arXiv:1804.10450 (2018)

Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous SPDEs. Electron. J. Probab. 4(6), 29 (1999)

Dörsek, P., Teichmann, J.: A semigroup point of view on splitting schemes for stochastic (partial) differential equations. arXiv:1011.2651 (2010)

El Euch, O., Rosenbaum, M.: The characteristic function of rough Heston models. Math. Finance 29(1), 3–38 (2019)

Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equation. Volume 194 of Graduate Texts in Mathematics. Springer, New York (2000). (With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt)

Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

Filipović, D.: Consistency Problems for Heath–Jarrow–Morton Interest Rate Models. Lecture Notes in Mathematics, vol. 1760. Springer, Berlin (2001)

Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018)

Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Volume 34 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1990)

Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1), 83–90 (1971)

Mayerhofer, E.: Affine processes on positive semidefinite $$dd$$ matrices have jumps of finite variation in dimension $$d>1$$. Stoch. Process. Appl. 122(10), 3445–3459 (2012)

Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Volume 44 of Applied Mathematical Sciences. Springer, New York (1983)

Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces. Volume 3 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1999)