Markov models of major depression for linking psychiatric epidemiology to clinical practice

Scott B Patten1
1Associate Professor, Dept. Community Health Sciences, University of Calgary, Calgary, Canada

Tóm tắt

Most epidemiological studies of major depression report estimates of period prevalence. Such estimates are useful for public health applications, but are not very helpful for informing clinical practice. Period prevalence is determined predominantly by incidence and episode duration, but it is difficult to connect these epidemiological concepts to clinical issues such as risk and prognosis. Incidence is important for primary and secondary prevention, and prognostic information is useful for clinical decision-making. The objective of this study was to decompose period prevalence data for major depression into its constituent elements, thereby enhancing the value of these estimates for clinical practice. Data from a series of population-based Canadian studies were used in the analysis. Markov models depicting incidence, prevalence and recovery from major depressive episodes were developed. Monte Carlo simulation was used to constrain model parameters to the epidemiological data. The association of sex with major depression was found to be due to a higher incidence in women. In distinction, the higher prevalence in unmarried subjects was mostly due to a different prognosis. Age-related changes in prevalence were influenced by both factors. Education, which was not found to be associated with major depression in the survey data, had no impact either on risk or prognosis. The period prevalence of major depression is influenced both by incidence (risk) and episode duration (prognosis). Mathematical modeling of the underlying epidemiological relationships can make such data more readily interpretable in relation to clinical practice.

Từ khóa


Tài liệu tham khảo

Kessler RC, Ustun TB: The World Mental Health (WMH) Survey Initiative Version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int J Methods Psychiatr Res. 2004, 13: 93-121.

ESEMeD/MHEDEA 2000 Investigators: Prevalence of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand. 2004, 109(Suppl. 420): 21-27. 10.1111/j.1600-0047.2004.00327.x.

Blazer DG, Kessler RC, McGonagle KA, Swartz MS: The prevalence and distribution of Major Depression in a national community sample: the National Comorbidity Survey. Am J Psychiatry. 1994, 151: 979-986.

Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush JA, Waters EE, Wang PS: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003, 289: 3095-3105. 10.1001/jama.289.23.3095.

Patten SB, Lee RC: Refining Estimates of Major Depression Incidence and Episode Duration in Canada using a Monte Carlo Markov Model. Med Decis Making. 2004, 24: 351-358. 10.1177/0272989X04267008.

Patten SB, Lee RC: Towards a dynamic model of major depression epidemiology. Epidemiologia e Psychiatria Sociale. 2004, 13: 21-28.

Coryell W, Akiskal H, Leon AC, Winokur G, Maser JD, Mueller TI, Keller MB: The time course of nonchronic major depressive disorder. Uniformity across episodes and samples. Arch Gen Psychiatry. 1994, 51: 405-410.

Keller MB, Lavori PW, Mueller TI, Endicott J, Coryell W, Hirschfeld RMA, Shea T: Time to recovery, chronicity, and levels of psychopathology in major depression. A 5-year prospective follow-up of 431 subjects. Arch Gen Psychiatry. 1992, 49: 809-816.

Barendregt JJ, van Oortmarssen GJ, Vos T, Murray CJL: A generic model for the assessment of disease epidemiology: the computational basis of DisMod II. Population Health Metrics. 2003, 1: 4-4. 10.1186/1478-7954-1-4.

Ayuso-Mateos JL: Global burden of unipolar depressive disorders in the year 2000. 2003, Global Burden of Disease Draft 28-05-03. World Health Organization Global Program on Evidence for Health Policy (GPE).:1-13.

Andrews G, Sanderson K, Corry J, Lapsley HM: Using epidemiological data to model efficiency in reducing the burden of depression. The Journal of Mental Health Policy and Economics. 2000, 3: 175-186. 10.1002/mhp.96.

Sonnenberg FA, Beck JR: Markov models in medical decision making: a practical guide. Med Decis Making. 1993, 13: 322-338.

Kessler RC, Andrews G, Mroczek D, Ustun B, Wittchen HU: The World Health Organization Composite International Diagnostic Interview Short-Form (CIDI-SF). Int J Methods Psychiatr Res. 1998, 7: 171-185.

Patten SB, Brandon-Christie J, Devji J, Sedmak B: Performance of the Composite International Diagnostic Interview Short Form for Major Depression in a Community Sample. Chronic Dis Can. 2000, 21: 68-72.

Beaudet MP: Psychological health - depression. Health Reports. 1999, 11: 63-75.

Patten SB: Incidence of Major depression in Canada. CMAJ. 2000, 163: 714-715.

Data. 2001, TreeAge Software Inc.

American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). 2000, Washington, American Psychiatric Association

Andrews G, Issakidis C, Sanderson K, Corry J, Lapsley H: Utilising survey data to inform public policy: comparison of the cost-effectiveness of treatment of ten mental disorders. Br J Psychiatry. 2004, 184: 526-533. 10.1192/bjp.184.6.526.

Sorensen J, Kind P: Modelling cost-effectiveness issues in the treatment of clinical depression. IMA J Math Appl Med Biol. 1995, 12: 369-385.

Brugha TS, Jenkins R, Taub N, Meltzer H, Bebbington PE: A general population comparison of the Composite International Diagnostic Interview (CIDI) and the Schedules for Clinical Assessment in Neuropsychiatry (SCAN). Psychol Med. 2001, 31: 1001-1013. 10.1017/S0033291701004184.

Brugha TS, Bebbington PE, Jenkins R: A difference that matters: comparisons of structured and semi-structured psychiatric diagnostic interviews in the general populations. Psychol Med. 1999, 29: 1013-1020. 10.1017/S0033291799008880.

Narrow WE, Rae DS, Robins LN, Regier DA: Revised prevalence estimates of mental disorders in the United States: using a clinical significance criterion to reconcile 2 surveys' estimates. Arch Gen Psychiatry. 2002, 59: 115-123. 10.1001/archpsyc.59.2.115.

Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB: Sex and depression in the National Comorbidity Survey I: Lifetime prevalence, chronicity and recurrence. J Affect Disord. 1993, 29: 85-96. 10.1016/0165-0327(93)90026-G.

Melartin TK, Rytsälä HJ, Leskelä US, Lestalä-Mielonen PS, Sokero TP, Isometsä ET: Severity and comorbidity predict episode duration and recurrence of DSM-IV major depressive disorder. J Clin Psychiatry. 2004, 65: 810-819.

Simpson BH, Nee JC, Endicott J: First-episode major depression. Few sex differences in course. Arch Gen Psychiatry. 1997, 54: 633-639.

Eaton WW, Anthony JC, Gallo J, Cai G, Tien A, Romanoski A, Lyketsos C: Natural history of diagnostic interview schedule/DSM-IV major depression. The Baltimore Epidemiological Catchment Area follow-up. Arch Gen Psychiatry. 1997, 54: 993-999.

Sargeant JK, Bruce ML, Florio LP, Weissman MM: Factors associated with 1-year outcome of major depression in the community. Arch Gen Psychiatry. 1990, 47: 519-526.

Vos T, Haby MM, Berendregt JJ, Kruijshaar M, Corry J, Andrews G: The burden of major depression avoidable by longer-term treatment strategies. Arch Gen Psychiatry. 2004, 61: 1097-1103. 10.1001/archpsyc.61.11.1097.