Markov evolutions and hierarchical equations in the continuum. I: one-component systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Berezansky Yu.M., Kondratiev Yu.G., Kuna T., Lytvynov E.W.: On a spectral representation for correlation measures in configuration space analysis. Methods Funct. Anal. Topology 5(4), 87–100 (1999)
N. N. Bogoliubov. Problems of a Dynamical Theory in Statistical Physics. Gostekhisdat, Moscow, 1946. (in Russian). English translation in J. de Boer and G. E. Uhlenbeck (editors), Studies in Statistical Mechanics, vol. 1, pp. 1–118. North-Holland, Amsterdam, 1962.
Cocozza C., Roussignol M.: Unicitè d’un processus de naissance et mort sur la droite réelle. Ann. Inst. H. Poincaré Sect. B 15, 93–106 (1979)
D. L. Finkelshtein, Yu. G. Kondratiev, and O. Kutovyi. Individual based model with competition in spatial ecology. SIAM J. Math. Anal. (to appear).
Finkelshtein D.L., Kondratiev Yu.G., Lytvynov E.W.: Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics. Random Oper. Stochastic Equations 15, 105–126 (2007)
D. L. Finkelshtein, Yu. G. Kondratiev, and M. J. Oliveira. Markov evolutions and hierarchical equations in the continuum II. Multicomponent systems. In preparation, 2009.
Glötzl E.: Time reversible and Gibbsian point processes. I. Markovian spatial birth and death processes on a general phase space. Math. Nachr. 102, 217–222 (1981)
Glötzl E.: Time reversible and Gibbsian point processes. II. Markovian particle jump processes on a general phase space. Math. Nachr. 106, 62–71 (1982)
Holley R., Stroock D.W.: Nearest neighbor birth and death processes on the real line. Acta Math. 140, 103–154 (1978)
Kondratiev Yu.G., Kuna T.: Harmonic analysis on configuration space I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(2), 201–233 (2002)
Kondratiev Yu.G., Kuna T.: Correlation functionals for Gibbs measures and Ruelle bounds. Methods Funct. Anal. Topology 9(1), 9–58 (2003)
Yu. G. Kondratiev and T. Kuna. Harmonic analysis on configuration space II. Bogoliubov functional and equilibrium states. In preparation, 2009.
Kondratiev Yu.G., Kuna T., Oliveira M.J.: On the relations between Poissonian white noise analysis and harmonic analysis on configuration spaces. J. Funct. Anal. 213(1), 1–30 (2004)
Kondratiev Yu.G., Kuna T., Oliveira M.J.: Holomorphic Bogoliubov functionals for interacting particle systems in continuum. J. Funct. Anal. 238(2), 375–404 (2006)
Yu. G. Kondratiev, T. Kuna, M. J. Oliveira, J. L. Silva, and L. Streit. Hydrodynamic limits for the free Kawasaki dynamics of continuous particle systems. Preprint, 2008. http://www.math.uni-bielefeld.de/sfb701/preprints/sfb08082.pdf .
Kondratiev Yu.G., Kutovyi O., Minlos R.A.: On non-equilibrium stochastic dynamics for interacting particle systems in continuum. J. Funct. Anal. 255(1), 200–227 (2008)
Kondratiev Yu.G., Kutoviy O., Pirogov S.: Correlation functions and invariant measures in continuous contact model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11(2), 231–258 (2008)
Kondratiev Yu., Kutoviy O., Zhizhina E.: Nonequilibrium Glauber-type dynamics in continuum. J. Math. Phys. 47(11), 113501 (2006)
Kondratiev Yu., Lytvynov E.: Glauber dynamics of continuous particle systems. Ann. Inst. H. Poincaré Probab. Statist. 41, 685–702 (2005)
Kondratiev Yu.G., Lytvynov E., Röckner M.: Equilibrium Kawasaki dynamics of continuous particle systems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(2), 185–209 (2007)
Yu. G. Kondratiev, E. Lytvynov, and M. Röckner. Non-equilibrium stochastic dynamics in continuum: the free case. Condensed Matter Physics (to appear).
Kondratiev Yu., Skorokhod A.: On contact processes in continuum. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(2), 187–198 (2006)
T. Kuna. Studies in Configuration Space Analysis and Applications. PhD thesis, Bonner Mathematische Schriften Nr.324, University of Bonn, 1999.
Lenard A.: Correlation functions and the uniqueness of the state in classical statistical mechanics. Commun. Math. Phys. 30, 35–44 (1973)
Lenard A.: States of classical statistical mechanical systems of infinitely many particles I. Arch. Rational Mech. Anal. 59, 219–239 (1975)
Lenard A.: States of classical statistical mechanical systems of infinitely many particles II. Arch. Rational Mech. Anal. 59, 241–256 (1975)
Liggett T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer Verlag, Berlin (1999)
Lotwick H.W., Silverman B.W.: Convergence of spatial birth-and-death processes. Math. Proc. Cambridge Philos. Soc. 90(1), 155–165 (1981)
Møller J.: On the rate of convergence of spatial birth-and-death processes. Ann. Inst. Statist. Math. 41, 565–581 (1989)
Nguyen X.X., Zessin H.: Integral and differential characterizations of the Gibbs process. Math. Nachr. 88, 105–115 (1979)
M. J. Oliveira. Configuration Space Analysis and Poissonian White Noise Analysis. PhD thesis, Faculty of Sciences, University of Lisbon, 2002.