Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success

Marine Drugs - Tập 12 Số 2 - Trang 1066-1101
A.M. Martins1, Helena Vieira2, Helena Gaspar3, Susana Santos4
1BIOALVO, S.A., Tec Labs Centro de Inovação, Campus da FCUL, Campo Grande, Lisboa 1749-016, Portugal.
2BIOALVO, S.A., Tec Labs Centro de Inovação, Campus da FCUL, Campo Grande, Lisboa 1749-016, Portugal. [email protected].
3Centro de Química e Bioquímica (CQB) and Departamento de Química e Bioquímica (DQB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
4Centro de Química e Bioquímica (CQB) and Departamento de Química e Bioquímica (DQB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal. [email protected].

Tóm tắt

The marine environment harbors a number of macro and micro organisms that have developed unique metabolic abilities to ensure their survival in diverse and hostile habitats, resulting in the biosynthesis of an array of secondary metabolites with specific activities. Several of these metabolites are high-value commercial products for the pharmaceutical and cosmeceutical industries. The aim of this review is to outline the paths of marine natural products discovery and development, with a special focus on the compounds that successfully reached the market and particularly looking at the approaches tackled by the pharmaceutical and cosmetic companies that succeeded in marketing those products. The main challenges faced during marine bioactives discovery and development programs were analyzed and grouped in three categories: biodiversity (accessibility to marine resources and efficient screening), supply and technical (sustainable production of the bioactives and knowledge of the mechanism of action) and market (processes, costs, partnerships and marketing). Tips to surpass these challenges are given in order to improve the market entry success rates of highly promising marine bioactives in the current pipelines, highlighting what can be learned from the successful and unsuccessful stories that can be applied to novel and/or ongoing marine natural products discovery and development programs.

Từ khóa


Tài liệu tham khảo

Mann, J., Davidson, R.S., Hobbs, J.B., Banthorpe, D.V., and Harbourne, J.B. (1994). Natural Products, Their Chemistry and Biological Significance, Longman Scientific and Technical Longman Group. [1st ed.].

Dias, 2012, A historical overview of natural products in drug discovery, Metabolites, 2, 303, 10.3390/metabo2020303

Carter, 2011, Natural products and Pharma 2011: Strategic changes spur new opportunities, Nat. Prod. Rep., 28, 1783, 10.1039/c1np00033k

Newman, 2012, Natural products as sources of new drugs over the 30 years from 1981 to 2010, J. Nat. Prod., 75, 311, 10.1021/np200906s

Margulis, L., and Schwartz, K.V. (1998). Five Kingdoms—An Illustrated Guide to the Phyla of Life on Earth, W.H. Freeman & Company. [3rd ed.].

Gerwick, 2012, Lessons from the past and charting the future of marine natural products drug discovery and chemical biology, Chem. Biol., 19, 85, 10.1016/j.chembiol.2011.12.014

Leal, 2012, Trends in the discovery of new marine natural products from invertebrates over the last two decades—Where and what are we bioprospecting?, PLoS One, 7, e30580, 10.1371/journal.pone.0030580

Blunt, 2014, Marine natural products, Nat. Prod. Rep., 31, 160, 10.1039/c3np70117d

Blunt, 2013, Marine natural products, Nat. Prod. Rep., 30, 237, 10.1039/C2NP20112G

Bhatnagar, 2010, Immense essence of excellence: Marine microbial bioactive compounds, Mar. Drugs, 8, 2673, 10.3390/md8102673

Waters, 2010, The expanding role of marine microbes in pharmaceutical development, Curr. Opin. Biotechnol., 21, 780, 10.1016/j.copbio.2010.09.013

Penesyan, 2010, Development of novel drugs from marine surface associated microorganisms, Mar. Drugs, 8, 438, 10.3390/md8030438

Piel, 2009, Metabolites from symbiotic bacteria, Nat. Prod. Rep., 26, 338, 10.1039/B703499G

Pettit, 1982, Isolation and characterization of palystatins A–D, J. Nat. Prod., 45, 272, 10.1021/np50021a007

Berdy, 2005, Bioactive microbial metabolites, J. Antibiot., 58, 1, 10.1038/ja.2005.1

Sudek, 2007, Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina, J. Nat. Prod., 70, 67, 10.1021/np060361d

Molinski, 2009, Drug development from marine natural products, Nat. Rev. Drug Discov., 8, 69, 10.1038/nrd2487

Schumacher, 2011, Gold from the sea: Marine compounds as inhibitors of the hallmarks of cancer, Biotechnol. Adv., 29, 531, 10.1016/j.biotechadv.2011.02.002

Mishra, 2011, Natural products: An evolving role in future drug discovery, Eur. J. Med. Chem., 46, 4769, 10.1016/j.ejmech.2011.07.057

Nelson, 1988, Cosmetics. Content and function, Int. J. Dermatol., 27, 665, 10.1111/j.1365-4362.1988.tb01258.x

Kim, S.-K. (2012). Marine Cosmeceuticals: Trends and Prospects, CRC Press, Taylor & Francis Group.

Thomas, 2013, Beneficial effects of marine algal compounds in cosmeceuticals, Mar. Drugs, 11, 146, 10.3390/md11010146

Raposo, 2013, Bioactivity and applications of sulphated polysaccharides from marine microalgae, Mar. Drugs, 11, 233, 10.3390/md11010233

Kim, 2008, Anti-wrinkle activity of ziyuglycoside I isolated from a Sanguisorba officinalis root extract and its application as a cosmeceutical ingredient, Biosci. Biotechnol. Biochem., 72, 303, 10.1271/bbb.70268

Kijjoa, 2004, Pichan, drugs and cosmetics from the sea, Mar. Drugs, 2, 73, 10.3390/md202073

Imhoff, 2011, Bio-mining the microbial treasures of the ocean: New natural products, Biotechnol. Adv., 29, 468, 10.1016/j.biotechadv.2011.03.001

Mayer, 2009, Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action, Biochim. Biophys. Acta, 1790, 283, 10.1016/j.bbagen.2009.03.011

Ortholand, 2004, Natural products and combinatorial chemistry: Back to the future, Curr. Opin. Chem. Biol., 8, 271, 10.1016/j.cbpa.2004.04.011

Beutler, 2009, Natural products as a foundation for drug discovery, Curr. Protoc. Pharmacol., 46, 9.11.1, 10.1002/0471141755.ph0911s46

Radjasa, 2011, Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants, Bioorg. Med. Chem., 19, 6658, 10.1016/j.bmc.2011.07.017

Glaser, 2009, A renaissance in marine pharmacology: From preclinical curiosity to clinical reality, Biochem. Pharmacol., 78, 440, 10.1016/j.bcp.2009.04.015

Koehn, 2005, The evolving role of natural products in drug discovery, Nat. Rev. Drug Discov., 4, 206, 10.1038/nrd1657

Reynolds, 2002, Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy, J. Nat. Prod., 65, 221, 10.1021/np010444o

Leeds, 2006, Recent developments in antibacterial drug discovery: Microbe-derived natural products—From collection to the clinic, Expert Opin. Investig. Drugs, 15, 211, 10.1517/13543784.15.3.211

Brady, 2007, Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules, Nat. Protoc., 2, 1297, 10.1038/nprot.2007.195

Li, 2005, Metagenomics-based drug discovery and marine microbial diversity, Trends Biotechnol., 23, 539, 10.1016/j.tibtech.2005.08.006

Galm, 2007, Natural product drug discovery: The times have never been better, Chem. Biol., 14, 1098, 10.1016/j.chembiol.2007.10.004

Zhang, 2008, Beyond the hapmap genotypic data: Prospects of deep resequencing projects, Curr. Bioinform., 3, 178, 10.2174/157489308785909232

Piel, 2006, Combinatorial biosynthesis in symbiotic bacteria, Nat. Chem. Biol., 2, 661, 10.1038/nchembio1206-661

Mayer, 2013, Marine pharmacology and the marine pharmaceuticals pipeline, FASEB J., 27, 1167.7, 10.1096/fasebj.27.1_supplement.1167.7

Newman, 2004, Marine natural products and related compounds in clinical and advanced preclinical trials, J. Nat. Prod., 67, 1216, 10.1021/np040031y

Mayer, 2010, The odyssey of marine pharmaceuticals: A current pipeline perspective, Trends Pharmacol. Sci., 31, 255, 10.1016/j.tips.2010.02.005

BCC Research. Available online: http://www.bccresearch.com/pressroom/phm/global-market-marine-derived-drugs-reach-nearly-$8.6-billion-2016.

Freedonia Group. Available online: http://www.freedoniagroup.com/FreedoniaStudyIndex.aspx.

EurOcean. Available online: http://www.eurocean.org/np4/2502.html.

Rouhi, 1995, Supply Issues Complicate Trek of Chemicals from the Sea to Market, Chem. Eng. News, 73, 42, 10.1021/cen-v073n047.p042

Leal, 2012, Bioprospecting of marine invertebrates for new natural products—A chemical and zoogeographical perspective, Molecules, 17, 9842, 10.3390/molecules17089842

Pettit, 2011, Culturability and secondary metabolite diversity of extreme microbes: Expanding contribution of deep sea and deep-sea vent microbes to natural product discovery, Mar. Biotechnol., 13, 1, 10.1007/s10126-010-9294-y

Montaser, 2011, Marine natural products: A new wave of drugs?, Future Med. Chem., 3, 1475, 10.4155/fmc.11.118

Hill, R.T. Marine Natural Products Biotechnology. Available online: http://www.eolss.net/sample-chapters/c17/e6-58-08-05.pdf.

Cragg, 2012, The impact of the United Nations Convention on Biological Diversity on natural products research, Nat. Prod. Rep., 29, 1407, 10.1039/c2np20091k

Costello, 2006, European marine biodiversity inventory and taxonomic resources: State of the art and gaps in knowledge, Mar. Ecol. Prog. Ser., 316, 257, 10.3354/meps316257

Jianga, 2013, Is coarse taxonomy sufficient for detecting macroinvertebrate patterns in floodplain lakes?, Ecol. Indic., 27, 48, 10.1016/j.ecolind.2012.11.015

Hughes, 2011, Principles of early drug discovery, Br. J. Pharmacol., 162, 1239, 10.1111/j.1476-5381.2010.01127.x

Gribbon, 2005, High-throughput drug discovery: What can we exulect from HTS?, Drug Discov. Today, 10, 17, 10.1016/S1359-6446(04)03275-1

Kingston, 2011, Modern natural products drug discovery and its relevance to biodiversity conservation, J. Nat. Prod., 74, 496, 10.1021/np100550t

Parker, C.N., Ottl, J., Gabriel, D., and Zhang, J.H. (2010). Natural Product Chemistry for Drug Discovery, Royal Society of Chemistry.

Suyama, 2011, Survey of marine natural product structure revisions: A synergy of spectroscopy and chemical synthesis, Bioorg. Med. Chem., 19, 6675, 10.1016/j.bmc.2011.06.011

Maier, 2009, Structural revisions of natural products by total synthesis, Nat. Prod. Rep., 26, 1105, 10.1039/b809658a

Michel, 2013, New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources, Planta Med., 79, 514, 10.1055/s-0032-1328300

AntiBase 2012, The Natural Compound Identifier. Available online: http://www.wiley-vch.de/stmdata/antibase.php.

MarinLit Database™, 2012, University of Canterbury, Christchurch, New Zealand. Available online: http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml.

Dictionary of Natural Products Online™, A Subset of the Chapman & Hall/CRC CHEMICAL Database™. Available online: http://dnp.chemnetbase.com/dictionary-search.do?method=view&id=6930629&si=.

Theron, 2007, NAPROC-13: A database for the dereplication of natural product mixtures in bioassay-guided protocols, Bioinformatics, 23, 3256, 10.1093/bioinformatics/btm516

Petersen, F., and Amstutz, R. (2008). Natural Compounds as Drugs, Birkhäuser.

Børresen, T., Boyen, C., Dobson, A., Höfle, M., Ianora, A., Jaspars, M., Kijjoa, A., Olafsen, J., Querellou, J., and Rigos, G. Marine Biotechnology: A New Vision and Strategy for Europe. Marine Board-ESF Position Paper 15. Available online: http://www.marine.ie/NR/rdonlyres/C076682C-2B32-437C-A781-B2EACBAA6B62/0/ESFMBmarine_biotechnology_paper15LR.pdf.

Meyer, C.A. The Global Marine Pharmaceuticals Pipeline. Available online: http://marinepharmacology.midwestern.edu/.

Schuster, 2005, Why drugs fail—A study on side effects in new chemical entities, Curr. Pharm. Des., 11, 3545, 10.2174/138161205774414510

Lichtman, 2013, A historical perspective on the development of the cytarabine (7 days) and daunorubicin (3 days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7 + 3, Blood Cells Mol. Dis., 50, 119, 10.1016/j.bcmd.2012.10.005

Cimino, 1984, Antiviral agents from a gorgonian, eunicella-cavolini, Experientia, 40, 339, 10.1007/BF01952539

Chhikara, 2010, Development of cytarabine prodrugs and delivery systems for leukemia treatment, Expert Opin. Drug Deliv., 7, 1399, 10.1517/17425247.2010.527330

Kripp, 2008, Treatment of lymphomatous and leukemic meningitis with liposomal encapsulated cytarabine, Int. J. Nanomed., 3, 397

National Cancer Institute, Clinical Trials (PDQ®). Available online: http://www.cancer.gov/clinicaltrials/search/results?protocolsearchid=6532271.

Clavis Pharma Announces Negative Outcome of Phase III CLAVELA Trial with Elacytarabine in Patients with Acute Myeloid Leukaemia. Available online: http://aqualis.no/home.

Shen, 2009, Design and synthesis of vidarabine prodrugs as antiviral agents, Bioorg. Med. Chem. Lett., 19, 792, 10.1016/j.bmcl.2008.12.031

Lloyd-Evans, L.P.M. A Study into the Prospects for Marine Biotechnology Development in the United Kingdom. Foresight Marine Panel, Marine Biotechnology Group 2005. Available online: http://www.vliz.be/imisdocs/publications/238815.pdf.

Mcintosh, 1982, Isolation and structure of a peptide toxin from the marine snail conus-magus, Arch. Biochem. Biophys., 218, 329, 10.1016/0003-9861(82)90351-4

Oliveira, B.M. (2000). Drugs from the Sea, Karger.

Bauer, 2013, Industrial natural product chemistry for drug discovery and development, Nat. Prod. Rep., 31, 35, 10.1039/C3NP70058E

Schmidtko, 2010, Ziconotide for treatment of severe chronic pain, Lancet, 375, 1569, 10.1016/S0140-6736(10)60354-6

(2010). Elan 2010 Annual Report, Elan Corporation.

Olivera, 2006, Conus peptides: Biodiversity-based discovery and exogenomics, J. Biol. Chem., 281, 31173

Vemomics for Health. Available online: http://www.venomics.eu/.

Glueck, 2012, Titrating lovaza from 4 to 8 to 12 grams/day in patients with primary hypertriglyceridemia who had triglyceride levels >500 mg/dL despite conventional triglyceride lowering therapy, Lipids Health Dis., 11, 143, 10.1186/1476-511X-11-143

Rupp, 2009, OmacorA® (prescription omega-3-acid ethyl esters 90): From severe rhythm disorders to hypertriglyceridemia, Adv. Ther., 26, 675, 10.1007/s12325-009-0045-2

Koski, 2008, Omega-3-acid ethyl esters (lovaza) for severe hypertriglyceridemia, Pharm. Ter., 33, 271

Galmarini, 2010, A review of trabectedin (ET-743): A unique mechanism of action, Mol. Cancer Ther., 9, 2157, 10.1158/1535-7163.MCT-10-0263

Monk, 2012, Trabectedin as a new chemotherapy option in the treatment of relapsed platinum sensitive ovarian cancer, Curr. Pharm. Des., 18, 3754, 10.2174/138161212802002814

Cuevas, 2009, Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem, Nat. Prod. Rep., 26, 322, 10.1039/b808331m

PharmaMar Annual report 2011. Available online: http://www.pharmamar.com/pdf/EN_memoria2012.pdf.

Aicher, 1992, Total synthesis of halichondrin-B and norhalichondrin-B, J. Am. Chem. Soc., 114, 3162, 10.1021/ja00034a086

Towle, 2001, In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B, Cancer Res., 61, 1013

NCI Development Therapeutics Program, Success storY: Halichondrin B (NSC 609395) E7389 (NSC 707389). Available online: http://dtp.nci.nih.gov/timeline/flash/success_stories/S4_halichondrinB.htm.

Pettit, 1987, Antineoplastic agents 136. The isolation and structure of a remarkable marine animal antineoplastic constituent—Dolastatin 10, J. Am. Chem. Soc., 109, 6883, 10.1021/ja00256a070

Eccles, 2010, Efficacy and safety of an antiviral Iota-Carrageenan nasal spray: A randomized, double-blind, placebo-controlled exploratory study in volunteers with early symptoms of the common cold, Respir. Res., 11, 108, 10.1186/1465-9921-11-108

Euromonitor. Available online: http://www.euromonitor.com/skin-care.

Chi, 2005, Exopolysaccharides from marine bacteria, J. Ocean Univ. China, 4, 67, 10.1007/s11802-005-0026-2

Nichols, 2005, Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: A review, Mar. Biotechnol., 7, 253, 10.1007/s10126-004-5118-2

Vincent, 1994, Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid alvinella pompejana, Appl. Environ. Microbiol., 60, 4134, 10.1128/aem.60.11.4134-4141.1994

Raguenes, 1996, Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer, Appl. Environ. Microbiol., 62, 67, 10.1128/aem.62.1.67-73.1996

Raguenes, 1997, Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana, Int. J. Syst. Bacteriol., 47, 989, 10.1099/00207713-47-4-989

Raguenes, 1997, Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent, J. Appl. Microbiol., 82, 422, 10.1046/j.1365-2672.1997.00125.x

Rougeaux, 1999, Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent, Carbohydr. Res., 315, 273, 10.1016/S0008-6215(99)00019-1

Raguenes, 2002, A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid, J. Appl. Microbiol., 93, 310, 10.1046/j.1365-2672.2002.01689.x

Weiner, 1995, Structure, function and immunochemistry of bacterial exopolysaccharides, J. Ind. Microbiol., 15, 339, 10.1007/BF01569989

Desbruyeres, 1980, Alvinella pompejana gen. sp. nov., aberrant Ampharetidae from East Pacific Rise hydrothermal vents, Oceanol. Acta, 3, 326

Ropartz, 2012, Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain, Carbohydr. Polym., 90, 49, 10.1016/j.carbpol.2012.04.059

Thibodeau, 2006, The applications and functions of new exopolysaccharide “Deepsane” from the deepest oceans, Fragr. J., 34, 61

Potts, 1992, Phospholipase A2 inhibitors from marine organisms, J. Nat. Prod., 55, 1701, 10.1021/np50090a001

Day, 2013, Cyclodextrin formulation of the marine natural product pseudopterosin A uncovers optimal pharmacodynamics in proliferation studies of human umbilical vein endothelial cells, Mar. Drugs, 11, 3258, 10.3390/md11093258

Rouhi, 2003, Betting on natural products for cures, Chem. Eng. News, 81, 93, 10.1021/cen-v081n041.p093

Lipotec. Available online: http://www.lipotec.com.

Ivatt, R.J. (1984). The Biology of Glycoproteins, Plenum Press.

Gottschalk, A. (1972). Glycoproteins: Their Composition, Structure and Function, Elsevier Publishing Company.

Martins, 2013, Photoprotective bioactivity present in a unique marine bacteria collection from Portuguese deep sea hydrothermal vents, Mar. Drugs, 11, 1506, 10.3390/md11051506

RefirMAR™ by BIOALVO. Available online: http://www.bioalvo.com/products/products-bioactive-ingredients/refirmar.

Satyanarayana, 2011, A review on microalgae, a versatile source for sustainable energy and materials, Int. J. Energy Res., 35, 291, 10.1002/er.1695

Stolz, 2005, Manufacturing microalgae for skin care, Cosmet. Toilet., 120, 99

CODIF Website. Available online: http://www.codif-recherche-et nature.com/en/s06_catalogue/s06p02_fiche.php?prod=56.

An Unlimite Mine of Innovation. Available online: http://greensea.fr/en/active-ingredients.

Patented Breakthrough Ingredient. Available online: http://www.algenist.com/why-algenist/patented-breakthrough-ingredient.

Frutarom. Available online: http://www.frutarom.com/FrutaromNew/index.asp.

Senaratne, 2006, Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin, Bioresour. Technol., 97, 191, 10.1016/j.biortech.2005.02.024

Alan, 2000, Strategies for discovering drugs from previously unexplored natural products, Drug Discov. Today, 5, 294, 10.1016/S1359-6446(00)01511-7

Wagenaar, 2008, Pre-fractionated microbial samples—The second generation natural products library at Wyeth, Molecules, 13, 1406, 10.3390/molecules13061406

Cobb, 2014, DNA assembly techniques for next generation combinatorial biosynthesis of natural products, J. Ind. Microbiol. Biotechnol., 41, 469, 10.1007/s10295-013-1358-3

Pollier, 2011, Combinatorial biosynthesis in plants: A (p)review on its potential and future exploitation, Nat. Prod. Rep., 28, 1897, 10.1039/c1np00049g

Leal, 2013, Coral aquaculture to support drug discovery, Trends Biotechnol., 31, 555, 10.1016/j.tibtech.2013.06.004