Marked point process in image analysis
Tóm tắt
In this article, we consider the marked point process framework for image analysis. We first show that marked point processes are more adapted than Markov random fields (MRFs) including some geometrical constraints in the solution and dealing with strongly correlated noise. Then, we consider three applications in remote sensing: road network extraction, building extraction, and image segmentation. For each of them, we define a prior model, incorporating geometrical constraints on the solution. We also derive a reversible jump Monte Carlo Markov chains (RJMCMC) algorithm to obtain the optimal solution with respect to the defined models. Results show that this approach is promising and can be applied to a broad range of image processing problems.
Từ khóa
#Image analysis #Image segmentation #Bayesian methods #Remote sensing #Lattices #Cascading style sheets #Markov random fields #Roads #Solid modeling #Monte Carlo methodsTài liệu tham khảo
waagepetersen, 1997, Contributions to the statistical modelling of image data and spatial point patterns
10.1109/36.662728
10.1093/biomet/82.4.711
green, 1996, mcmc in image analysis, Markov Chain Monte Carlo in Practice, 381
grenander, 1993, General Pattern Theory
grenander, 1994, representations of knowledge in complex systems, J Royal Stat Soc, 56, 549
10.1006/cviu.1998.0731
10.1111/1467-9876.00115
imberty, 2000, Simulation de processus objets Etude de faisabilité pour une application á la segmentation d image
10.1117/12.213096
10.1006/cviu.1999.0750
10.1109/34.491623
10.1007/BF00535104
stoyan, 1987, Stochastic Geometry and its Applications
besag, 1974, spatial interaction and the statistical analysis of lattice systems (with discussion), J Royal Statist Soc, 36, 192
10.1063/1.1381915
10.1109/SSP.2001.955212
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J
10.1515/mcma.2001.7.1-2.149
10.1109/TPAMI.1984.4767596
garcin, 2001, buiding extraction using a markov point process, Proc ICIP 01
10.1080/02664769300000065
geyer, 1994, simulation and likelihood inference for spatial point process, Scand J Stat, 21, 359
10.1007/978-3-642-48678-4_34
10.1109/78.482117
ripley, 1997, modelling spatial patterns, J Royal Statistical Institute, 39, 172
ortner, 2001, Extraction de caricatures de batiments sur des modè les numé riques d é lé vation
robert, 1999, Monte Carlo Statistical Methods, 10.1007/978-1-4757-3071-5
10.1112/jlms/s2-15.1.188
10.1093/biomet/86.3.649
10.1239/aap/1035227992