Marine CSEM 3D modeling with a downhole dipole source for natural gas hydrate production monitoring

Ying Liu1,2,3, Tingting He2,1, Yuan Li4,1, Yi Zhang5
1Beijing International Center for Gas Hydrate, Peking University, Beijing, China
2Key Laboratory of Orogenic Belts and Crustal Evolution (School of Earth and Space Sciences, Peking University), Ministry of Education, Beijing, China
3Shenzhen Branch of CNOOC (China) Limited, Shenzhen, China
4Beijing Information Science and Technology University, Beijing, China
5Chinese Academy of Geological Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Archer D, Buffett B, Brovkin V (2008) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci 106(49):20596–20601

Asaue H, Koike K, Yoshinaga T, Goto TN, Yoshida H (2021) Development and application of a variable-frequency-based electric sounding system for increasing the accuracy of aquifer detection. Nat Resour Res 30(4):3017–3034

Bakr SA, Mannseth T (2009) Feasibility of simplified integral equation modeling of low-frequency marine CSEM with a resistive target. Geophysics 74(5):F107–F117

Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215

Butler SL, Zhang Z (2016) Forward modeling of geophysical electromagnetic methods using Comsol. Comput Geosci 87:1–10

Cai HZ, Hu XY, Li JH, Endo M, Xiong B (2017) Parallelized 3D CSEM modeling using edge-based finite element with total field formulation and unstructured mesh. Comput Geosci 99:125–134

Chave AD, Cox CS (1982) Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. Forward problem and model study. J Geophys Res 87(B7):5327–5338

Chong ZR, Yang SHB, Babu P, Linga P, Li XS (2016) Review of natural gas hydrates as an energy resource: prospects and challenges. Appl Energy 162:1633–1652

COMSOL (2020) Multiphysics 5.6 user’s guide. COMSOL Inc, Stockholm

Constable S (2010) Ten years of marine CSEM for hydrocarbon exploration. Geophysics 75(5):67A-75A

Constable S, Srnka LJ (2007) An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 72(2):A3–A12

Constable S, Weiss CJ (2006) Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modeling. Geophysics 71(2):G43–G51

Cox C (1980) Electromagnetic induction in the oceans and inferences on the constitution of the earth. Geophys Surv 4(1–2):137–156

Edwards RN (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26(6):675–700

Edwards RN (1997) On the resource evaluation of marine gas hydrate deposits using sea-floor transient electric dipole-dipole methods. Geophysics 62(1):63–74

Goswami BK, Weitemeyer KA, Minshull TA, Sinha MC, Westbrook GK, Chabert A, Henstock TJ, Ker S (2015) A joint electromagnetic and seismic study of an active pockmark within the hydrate stability field at the Vestnesa Ridge, West Svalbard margin. J Geophys Res 120(10):6797–6822

Goto TN, Kasaya T, MacHiyama H, Takagi R, Matsumoto R, Okuda Y, Satoh M, Watanabe T, Seama N, Mikada H, Sanada Y, Kinoshita M (2008) A marine deep-towed DC resistivity survey in a methane hydrate area, Japnn Sea. Explor Geophys 39(1):52–59

Gribenko A, Zhdanov M (2007) Rigorous 3D inversion of marine CSEM data based on the integral equation method. Geophysics 72(2):A73–A84

Harinarayana T, Hardage B, Orange A (2012) Controlled-source marine electromagnetic 2-D modeling gas hydrate studies. Mar Geophys Res 33(3):239–250

Helwig SL, Wood W, Gloux B (2019) Vertical-vertical controlled-source electromagnetic instrumentation and acquisition. Geophys Prospect 67(6):1582–1594

Hornbach MJ, Holbrook WS, Gorman AR, Hackwith KL, Lizarralde D, Pecher I (2003) Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics 68(1):92–100

Jing J, Chen K, Deng M, Zhao Q, Luo X, Tu G, Wang M (2019) A marine controlled-source electromagnetic survey to detect gas hydrates in the Qiongdongnan Basin, South China Sea. J Asian Earth Sci 171:201–212

Kohnke C, Liu L, Streich R, Swidinsky A (2018) A method of moments approach to model the electromagnetic response of multiple steel casings in a layered earth. Geophysics 83(2):B81–B96

Kong FN, Johnstad SE, Røsten T, Westerdahl H (2008) A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media. Geophysics 73(1):F9–F19

Kwon T, Cho G (2012) Submarine slope failure primed and triggered by bottom water warming in oceanic hydrate-bearing deposits. Energies 5(8):2849–2873

Liang PF, Di QY, Zhen QH, Wang R, Fayemi O, Fu CM, Lei D, An ZG, Fan JB, Ma ZJ, Yang LY (2020) Electromagnetic telemetry simulation in vertical drillings. Geophysics 85(6):E207–E219

Lien M, Mannseth T (2008) Sensitivity study of marine CSEM data for reservoir production monitoring. Geophysics 73(4):F151–F163

Malovichko M, Tarasov AV, Yavich N, Zhdanov MS (2019) Mineral exploration with 3-D controlled-source electromagnetic method: a synthetic study of Sukhoi Log gold deposit. Geophys J Int 219(3):1698–1716

Mittet R (2010) High-order finite-difference simulations of marine CSEM surveys using a correspondence principle for wave and diffusion fields. Geophysics 75(1):F33–F50

Mountjoy JJ, Pecher I, Henrys S, Crutchley G, Barnes PM, Plaza-Faverola A (2014) Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand. Geochem Geophys Geosyst 15(11):4137–4156

Oh S, Noh K, Seol SJ, Byun J, Yi M (2016) Interpretation of controlled-source electromagnetic data from iron ores under rough topography. J Appl Geophys 124:106–116

Omisore BO, Sheng J, Fayemi O (2020) Numerical modelling of borehole-surface CSEM response of onshore gas hydrate deposit with higher order finite difference method. J Appl Geophys 174:103968

Orange A, Key K, Constable S (2009) The feasibility of reservoir monitoring using time-lapse marine CSEM. Geophysics 74(2):F21–F29

Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55(1):126–168

Scholl C, Edwards RN (2007) Marine downhole to seafloor dipole-dipole electromagnetic methods and the resolution of resistive targets. Geophysics 72(2):A39–A49

Schwalenberg K, Rippe D, Koch S, Scholl C (2017) Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J Geophys Res 122(5):3334–3350

Shipley TH (1979) Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull 63(12):2204–2213

Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases, 3rd edn. The CRC Press, Florida

Streich R (2009) 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data; direct solution and optimization for high accuracy. Geophysics 74(5):F95–F105

Wang XJ, Wu SG, Liu XW, Yang SX, Guo YQ, Li QP (2010) Estimation of gas hydrates resources based on well log data and seismic data in Shenhua area. Prog Geophys 25(4):1288–1297 (in Chinese)

Weitemeyer KA, Constable SC, Key KW, Behrens JP (2006) First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon. Geophys Res Lett 33(3):L3304

Weitemeyer KA, Constable S, Tréhu AM (2011) A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon. Geophys J Int 187(1):45–62

Ye JL, Qin XW, Xie WW, Lu HL, Ma BJ, Qiu HJ, Liang JQ, Lu JA, Kuang ZG, Lu C, Liang QY, Wei SP, Yu YJ, Liu CS, Li B, Shen K, Shi HX, Lu QP, Li J, Kou BB, Song G, Li B, Zhang HE, Lu HF, Ma C, Dong YF, Bian H (2020) The second natural gas hydrate production test in the South China Sea. China Geol 3(2):197–209

Yuan J, Edwards RN (2000) The assessment of marine gas hydrates through electrical remote sounding: hydrate without a BSR? Geophys Res Lett 27(16):2397–2400

Yuguo L, Kerry K (2007) 2D marine controlled-source electromagnetic modeling: Part 1—an adaptive finite-element algorithm. Geophysics 72(2):A51–A62