Marginal populations show physiological adaptations and resilience to future climatic changes across a North Atlantic distribution
Tài liệu tham khảo
Adey, 1973, Crustose coralline algae: a Re-evaluation in the geological sciences, GSA Bull., 84, 883, 10.1130/0016-7606(1973)84<883:CCAARI>2.0.CO;2
Aitken, 2008, Adaptation, migration or extirpation: climate change outcomes for tree populations, Evol. Appl., 1, 95, 10.1111/j.1752-4571.2007.00013.x
Andrake, 1980, Alizarin red dye as a marker for measuring growth in Corallina officinalis L. (Corallinaceae, Rhodophyta), J. Phycol., 16, 620, 10.1111/j.1529-8817.1980.tb03081.x
Benedetti-Cecchi, 2006, Understanding the consequences of changing biodiversity on rocky shores: how much have we learned from past experiments?, J. Exp. Mar. Biol. Ecol., 338, 193, 10.1016/j.jembe.2006.06.020
Borowitzka, 1982, Morphological and cytological aspects of algal calcification, Vol. 74, 127
Breeman, 1988, Relative importance of temperature and other factors in determining geographic boundaries of seaweeds – experimental and phenological evidence, Helgolander Meeresuntersuchungen, 42, 199, 10.1007/BF02366043
Brodie, 2013, Epitypification and redescription of Corallina officinalis L., the type of the genus, and C. elongata Ellis et Solander (Corallinales, Rhodophyta), Cryptogam. Algol., 34, 49, 10.7872/crya.v34.iss1.2013.49
Brodie, 2014, The future of the north-east Atlantic benthic flora in a high CO2 world, Ecol. Evol., 4, 2787, 10.1002/ece3.1105
Brussard, 1984, Geographic patterns and environmental gradients: the central-marginal models in Drosophila revisited, Annu. Rev. Ecol. Syst., 15, 10.1146/annurev.es.15.110184.000325
Case, 2000, Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders, Am. Nat., 155, 583, 10.1086/303351
Chisholm, 1991, Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities, Limnol. Oceanogr., 36, 1232, 10.4319/lo.1991.36.6.1232
Colthart, 1973, Growth rates of Corallina officinalis (Rhodophyta) at different temperatures, Mar. Biol., 18, 46, 10.1007/BF00347919
Cornwall, 2015, Experimental design in ocean acidification research: problems and solutions, ICES J. Mar. Sci., 73, 572, 10.1093/icesjms/fsv118
Coull, 1983, Refuges from fish predation – experiments with phytal meiofauna from the New Zealand rocky intertidal, Ecology, 64, 1599, 10.2307/1937513
Daleo, 2006, Negative effects of an autogenic ecosystem engineer: interactions between coralline turf and an ephemeral green alga, Mar. Ecol. Prog. Ser., 315, 67, 10.3354/meps315067
Davenport, 1999, Epifaunal composition and fractal dimensions of marine plants in relation to emersion, J. Mar. Biol. Assoc. U.K., 79, 351, 10.1017/S0025315498000393
Dawes, 1989, Temperature acclimation in cultured Eucheuma isiforme from Florida and E. alvarezii from the Philippines, J. Appl. Phycol., 1, 59, 10.1007/BF00003536
Dayton, 1972, Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica, 81
Dickson, 1987, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep. Sea Res. Part A Oceanogr. Res. Pap., 34, 1733, 10.1016/0198-0149(87)90021-5
2007, 191
Díez, 2012, Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change, Estuar. Coast. Shelf Sci., 99, 108, 10.1016/j.ecss.2011.12.027
Digby, 1977, Growth and calcification in the coralline algae, Clathromorphum circumscriptum and Corallina officinalis, and the significance of pH in relation to precipitation, J. Mar. Biol. Assoc. U.K., 57, 1095, 10.1017/S0025315400026151
Doney, 2009, Ocean acidification: the other CO2 problem, Ann. Rev. Mar. Sci., 1, 169, 10.1146/annurev.marine.010908.163834
Egilsdottir, 2013, Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongate, Mar. Biol., 160, 2103, 10.1007/s00227-012-2090-7
Ganning, 1971, Studies on chemical, physical and biological conditions in Swedish rockpool ecosystems, Ophelia, 9, 51, 10.1080/00785326.1971.10430090
Gattuso, 1999, Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry, Am. Zool., 39, 160, 10.1093/icb/39.1.160
Hall-Spencer, 2008, Volcanic carbon dioxide vents show ecosystem effects of ocean acidification, Nature, 454, 96, 10.1038/nature07051
Hampe, 2005, Conserving biodiversity under climate change: the rear edge matters, Ecol. Lett., 8, 461, 10.1111/j.1461-0248.2005.00739.x
Helmuth, 2006, Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change, Annu. Rev. Ecol. Evol. Syst., 37, 373, 10.1146/annurev.ecolsys.37.091305.110149
Hofmann, 2012, Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels, Mar. Ecol. Prog. Ser., 464, 89, 10.3354/meps09892
Hofmann, 2012, Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels, Mar. Biol., 159, 783, 10.1007/s00227-011-1854-9
Hofmann, 2014, Exploring local adaptation and the ocean acidification seascape-studies in the California Current Large Marine Ecosystem, Biogeosciences, 11, 1053, 10.5194/bg-11-1053-2014
2020
IPCC, 2014, 151
Johansen, 1981, 239
Johnson, 2012, Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing, J. Exp. Mar. Biol. Ecol., 434, 94, 10.1016/j.jembe.2012.08.005
Johnson, 2014, Contrasting effects of ocean acidification on tropical fleshy and calcareous algae, PeerJ, 2, e411, 10.7717/peerj.411
Jones, 1994, Organisms as ecosystem engineers, Oikos, 69, 373, 10.2307/3545850
Lewis, 1998, CO2SYS - Program developed for the CO2 system calculations
Kamenos, 2010, Temperature controls on coralline algal skeletal growth, J. Phycol., 46, 331, 10.1111/j.1529-8817.2009.00780.x
Kamenos, 2013, Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification, Glob. Change Biol., 19, 3621, 10.1111/gcb.12351
Kelaher, 2001, Spatial patterns of diverse macrofaunal assemblages in coralline turf and their associations with environmental variables, J. Mar. Biol. Assoc. U.K., 81, 917, 10.1017/S0025315401004842
Kelaher, 2003, Experimental transplantations of coralline algal turf to demonstrate causes of differences in macrofauna at different tidal heights, J. Exp. Mar. Biol. Ecol., 282, 23, 10.1016/S0022-0981(02)00443-4
Kleypas, 2006, Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, 88
Kolzenburg, 2019, Understanding the margin squeeze: differentiation in fitness‐related traits between central and trailing edge populations of Corallina officinalis, Ecol. Evol., 9, 5787, 10.1002/ece3.5162
Kroeker, 2013, Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884, 10.1111/gcb.12179
Lobban, 1994
Loxton, 2017, The forgotten variable: impact of cleaning on the skeletal composition of a marine invertebrate, Chem. Geol., 474, 45, 10.1016/j.chemgeo.2017.10.022
Lüning, 1990
Martin, 2009, Response of Mediterranean coralline algae to ocean acidification and elevated temperature, Glob. Change Biol., 15, 2089, 10.1111/j.1365-2486.2009.01874.x
Martone, 2010, Bleaching of an intertidal coralline alga: untangling the effects of light, temperature, and desiccation, Mar. Ecol. Prog. Ser., 416, 57, 10.3354/meps08782
McCoy, 2014, Skeletal trade-offs in coralline algae in response to ocean acidification, Nat. Clim. Change, 4, 719, 10.1038/nclimate2273
McCoy, 2019, Thermal plasticity is independent of environmental history in an intertidal seaweed, Ecol. Evol., 9, 13402, 10.1002/ece3.5796
McCoy, 2016, Diurnal and tidal patterns of carbon uptake and calcification in geniculate inter‐tidal coralline algae, Mar. Ecol., 37, 553, 10.1111/maec.12295
Mehrbach, 1973, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897, 10.4319/lo.1973.18.6.0897
Morris, 1983, Diurnal and seasonal-variation in physicochemical conditions within intertidal rock pools, Estuar. Coast. Shelf Sci., 17, 339, 10.1016/0272-7714(83)90026-4
Nelson, 2009, Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review, Mar. Freshw. Res., 60, 787, 10.1071/MF08335
Nicastro, 2013, Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus, BMC Biol., 11, 6, 10.1186/1741-7007-11-6
Noël, 2009, Grazing dynamics in intertidal rockpools: connectivity of microhabitats, J. Exp. Mar. Biol. Ecol., 370, 9, 10.1016/j.jembe.2008.11.005
Noisette, 2013, Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures, J. Phycol., 49, 746, 10.1111/jpy.12085
Noisette, 2013, Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification, J. Exp. Mar. Biol. Ecol., 448, 179, 10.1016/j.jembe.2013.07.006
Olafsson, 2009, Rate of Iceland Sea acidification from time series measurements, Biogeosciences, 6, 2661, 10.5194/bg-6-2661-2009
Orr, 2005, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681, 10.1038/nature04095
Parmesan, 2006, Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 37, 637, 10.1146/annurev.ecolsys.37.091305.110100
Pearson, 2009, Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations, J. Ecol., 97, 450, 10.1111/j.1365-2745.2009.01481.x
Ragazzola, 2012, Ocean acidification weakens the structural integrity of coralline algae, Glob. Change Biol., 18, 2804, 10.1111/j.1365-2486.2012.02756.x
Ragazzola, 2013, Phenotypic plasticity of coralline algae in a high CO2 world, Ecol. Evol., 3, 3436, 10.1002/ece3.723
Rasband, 2016
Rendina, 2019, Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events, Mar. Environ. Res., 150, 104764, 10.1016/j.marenvres.2019.104764
Schoenrock, 2016, Climate change confers a potential advantage to fleshy Antarctic crustose macroalgae over calcified species, J. Exp. Mar. Biol. Ecol., 474, 58, 10.1016/j.jembe.2015.09.009
Smale, 2013, Extreme climatic event drives range contraction of a habitat-forming species, P. R. Soc. B: Biol. Sci., 280
Smith, 1975, Carbon dioxide and metabolism in marine environments, Limnol. Oceanogr., 20, 493, 10.4319/lo.1975.20.3.0493
Steneck, 1986, The ecology of coralline algal crusts: convergent patterns and adaptative strategies, Ann. Rev. Ecol. Evol. Syst., 17, 273, 10.1146/annurev.es.17.110186.001421
Tavares, 2018, Isolation and characterization of nine microsatellite markers for the red alga Corallina officinalis, Mol. Biol. Rep., 45, 2791, 10.1007/s11033-018-4353-y
van der Heijden, 2015, Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial, Biogeosciences, 12, 6429, 10.5194/bg-12-6429-2015
Watkinson, 1995, Sources, sinks and pseudo-sinks, J. Anim. Ecol., 126, 10.2307/5833
Wernberg, 2011, Seaweed communities in retreat from ocean warming, Curr. Biol., 21, 1828, 10.1016/j.cub.2011.09.028
Whittaker, 1956, Vegetation of the great smoky mountains, Ecol. Monogr., 26, 10.2307/1943577
Williamson, 2014, Corallina and Ellisolandia (Corallinales, Rhodophyta) photophysiology over daylight tidal emersion: interactions with irradiance, temperature and carbonate chemistry, Mar. Biol., 161, 2051, 10.1007/s00227-014-2485-8
Williamson, 2015, Towards resolution of species diversity and distribution in the calcified red algal genera Corallina and Ellisolandia (Corallinales, Rhodophyta), Phycologia, 54, 2, 10.2216/14-024.1
Williamson, 2017, The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta), Biogeosciences, 14, 4485, 10.5194/bg-14-4485-2017
Yesson, 2018, SNPs reveal geographical population structure of Corallina officinalis (Corallinaceae, Rhodophyta), Eur. J. Phycol., 53, 180, 10.1080/09670262.2017.1402373
Zeebe, 2009, Carbon dioxide, dissolved (ocean), 123