Mapping properties for the Bargmann transform on modulation spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)
Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Commun. Pure Appl. Math. 20, 1–101 (1967)
Bauer W.: Berezin–Toeplitz quantization and composition formulas. J. Funct. Anal. 256, 3107–3142 (2007)
Beals R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44, 45–57 (1977)
Berezin F.A.: Wick and anti-Wick symbols of operators. Mat. Sb. (N.S.) 86, 578–610 (1971)
Boggiatto P., Cordero E., Gröchenig K.H.: Anti-Wick generalized operators with symbol in distributional Sobolev spaces. Integr. Equ. Oper. Theory 48, 427–442 (2004)
Bony, J.-M.: Caractérisations des opérateurs pseudo-différentiels. In: Séminaire sur les équations aux Dérivées Partielles, 1996–1997, Exp. No. XXIII. école Polytech, Palaiseau, (1997)
Coburn, L.A.: The Bargmann isometry and Gabor-Daubechies wavelet localization operators. In: Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000). Oper. Theory Advances and Applications, vol. 129, pp. 169–178. Birkhäuser, Basel (2001)
Daubechies I.: Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)
Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical report, University of Vienna, Vienna, 1983; also In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and their applications, pp. 99–140. Allied Publisher, New Delhi (2003)
Feichtinger H.G.: Gabor frames and time–frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1997)
Feichtinger H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5, 109–140 (2006)
Feichtinger H.G., Gröchenig K.H.: Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal. 86, 307–340 (1989)
Feichtinger H.G., Gröchenig K.H.: Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. Math. 108, 129–148 (1989)
Feichtinger H.G., Gröchenig K.H., Walnut D.: Wilson bases and modulation spaces. Math. Nachr. 155, 7–17 (1992)
Gröbner, P.: Banachräume Glatter Funktionen und Zerlegungsmethoden, Thesis. University of Vienna, Vienna (1992)
Gröchenig K.H.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112, 1–42 (1991)
Gröchenig, K.H.: Private communications (2010)
Gröchenig K.H., Leinert M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17, 1–18 (2004)
Gröchenig, K.H., Toft, J.: Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces. J. Math. Anal. (to appear), arXiv:0905.4954
Gröchenig, K.H., Toft, J.: The Range of localization operators and lifting theorems for modulation and Bargmann-Foch Spaces (submitted), arXiv:1010.0513
Gröchenig K.H., Walnut D.: A Riesz basis for Bargmann-Fock space related to sampling and interpolation. Ark. Mat. 30, 283–295 (1992)
Guo B., Wang B., Zhao L.: Isometric decomposition operators, function spaces $${E_{p,q}^\lambda}$$ and applications to nonlinear evolution equations. J. Funct. Anal. 233, 1–39 (2006)
Hérau F.: Melin–Hörmander inequality in a Wiener type pseudo-differential algebra. Ark. Mat. 39, 311–338 (2001)
Holst A., Toft J., Wahlberg P.: Weyl product algebras and modulation spaces. J. Funct. Anal. 251, 463–491 (2007)
Huang C., Wang B.: Frequency uniform decomposition method for the generalized BO, KdV and NLS equations. J. Differ. Equ. 239, 213–250 (2007)
Hudzik H., Wang B.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232, 36–73 (2007)
Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I–III, Springer, Berlin, Tokyo, 1983, 1985
Iwabuchi T.: Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative indices. J. Differ. Equ. 248, 1972–2002 (2010)
Janssen A.J.E.M.: Bargmann transform, Zak transform, and coherent states. J. Math. Phys. 23(5), 720–731 (1982)
Lerner N.: The Wick calculus of pseudo-differential operators and some of its applications. CUBO 5, 213–236 (2003)
Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, London (1979)
Sugimoto M., Tomita N.: The dilation property of modulation spaces and their inclusion relation with Besov spaces. J. Funct. Anal. 248(1), 79–106 (2007)
Toft J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus, I. J. Funct. Anal. 207(2), 399–429 (2004)
Toft, J.: Convolution and embeddings for weighted modulation spaces. In: Boggiatto, P., Ashino, R., Wong, M.W. (eds.) Advances in Pseudo-Differential Operators, Operator Theory: Advances and Applications, 155, pp. 165–186. Birkhäuser Verlag, Basel (2004)
Toft J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus, II. Ann. Global Anal. Geom. 26, 73–106 (2004)
Toft J.: Minizization under entropy conditions, with applications in lower bound problems. J. Math. Phys. 45, 3216–3227 (2004)