Mapping properties for the Bargmann transform on modulation spaces

Mikael Signahl1, Joachim Toft2
1Department of Mathematics, University of Agder, Kristiansand, Norway
2Department of Mathematics and Systems Engineering, Växjö University, Växjö, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)

Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Commun. Pure Appl. Math. 20, 1–101 (1967)

Bauer W.: Berezin–Toeplitz quantization and composition formulas. J. Funct. Anal. 256, 3107–3142 (2007)

Beals R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44, 45–57 (1977)

Berezin F.A.: Wick and anti-Wick symbols of operators. Mat. Sb. (N.S.) 86, 578–610 (1971)

Boggiatto P., Cordero E., Gröchenig K.H.: Anti-Wick generalized operators with symbol in distributional Sobolev spaces. Integr. Equ. Oper. Theory 48, 427–442 (2004)

Bony, J.-M.: Caractérisations des opérateurs pseudo-différentiels. In: Séminaire sur les équations aux Dérivées Partielles, 1996–1997, Exp. No. XXIII. école Polytech, Palaiseau, (1997)

Coburn, L.A.: The Bargmann isometry and Gabor-Daubechies wavelet localization operators. In: Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000). Oper. Theory Advances and Applications, vol. 129, pp. 169–178. Birkhäuser, Basel (2001)

Daubechies I.: Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)

Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical report, University of Vienna, Vienna, 1983; also In: Krishna, M., Radha, R., Thangavelu, S. (eds.) Wavelets and their applications, pp. 99–140. Allied Publisher, New Delhi (2003)

Feichtinger H.G.: Gabor frames and time–frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1997)

Feichtinger H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5, 109–140 (2006)

Feichtinger H.G., Gröchenig K.H.: Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal. 86, 307–340 (1989)

Feichtinger H.G., Gröchenig K.H.: Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. Math. 108, 129–148 (1989)

Feichtinger H.G., Gröchenig K.H., Walnut D.: Wilson bases and modulation spaces. Math. Nachr. 155, 7–17 (1992)

Folland G.B.: Harmonic analysis in phase space. Princeton University Press, Princeton (1989)

Gröbner, P.: Banachräume Glatter Funktionen und Zerlegungsmethoden, Thesis. University of Vienna, Vienna (1992)

Gröchenig K.H.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112, 1–42 (1991)

Gröchenig K.H.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston (2001)

Gröchenig, K.H.: Private communications (2010)

Gröchenig K.H., Leinert M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Am. Math. Soc. 17, 1–18 (2004)

Gröchenig, K.H., Toft, J.: Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces. J. Math. Anal. (to appear), arXiv:0905.4954

Gröchenig, K.H., Toft, J.: The Range of localization operators and lifting theorems for modulation and Bargmann-Foch Spaces (submitted), arXiv:1010.0513

Gröchenig K.H., Walnut D.: A Riesz basis for Bargmann-Fock space related to sampling and interpolation. Ark. Mat. 30, 283–295 (1992)

Guo B., Wang B., Zhao L.: Isometric decomposition operators, function spaces $${E_{p,q}^\lambda}$$ and applications to nonlinear evolution equations. J. Funct. Anal. 233, 1–39 (2006)

Hérau F.: Melin–Hörmander inequality in a Wiener type pseudo-differential algebra. Ark. Mat. 39, 311–338 (2001)

Holst A., Toft J., Wahlberg P.: Weyl product algebras and modulation spaces. J. Funct. Anal. 251, 463–491 (2007)

Huang C., Wang B.: Frequency uniform decomposition method for the generalized BO, KdV and NLS equations. J. Differ. Equ. 239, 213–250 (2007)

Hudzik H., Wang B.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232, 36–73 (2007)

Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I–III, Springer, Berlin, Tokyo, 1983, 1985

Iwabuchi T.: Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative indices. J. Differ. Equ. 248, 1972–2002 (2010)

Janssen A.J.E.M.: Bargmann transform, Zak transform, and coherent states. J. Math. Phys. 23(5), 720–731 (1982)

Lerner N.: The Wick calculus of pseudo-differential operators and some of its applications. CUBO 5, 213–236 (2003)

Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, London (1979)

Sugimoto M., Tomita N.: The dilation property of modulation spaces and their inclusion relation with Besov spaces. J. Funct. Anal. 248(1), 79–106 (2007)

Toft J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus, I. J. Funct. Anal. 207(2), 399–429 (2004)

Toft, J.: Convolution and embeddings for weighted modulation spaces. In: Boggiatto, P., Ashino, R., Wong, M.W. (eds.) Advances in Pseudo-Differential Operators, Operator Theory: Advances and Applications, 155, pp. 165–186. Birkhäuser Verlag, Basel (2004)

Toft J.: Continuity properties for modulation spaces with applications to pseudo-differential calculus, II. Ann. Global Anal. Geom. 26, 73–106 (2004)

Toft J.: Minizization under entropy conditions, with applications in lower bound problems. J. Math. Phys. 45, 3216–3227 (2004)

Toft J.: Continuity and Schatten properties for pseudo-differential operators on modulation spaces. In: Toft, J., Wong, M.W., Zhu, H. (eds) Modern Trends in Pseudo-Differential Operators, Operator Theory: Advances and Applications, pp. 173–206. Birkhäuser Verlag, Basel (2007)