Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

Spectrochimica Acta Part B: Atomic Spectroscopy - Tập 64 Số 1 - Trang 67-73 - 2009
Jozef Kaiser1, Michaela Vašinová Galiová2, Karel Novotný2, Rostislav Červenka2, L. Reale3, Jan Novotný1, Marek Liška1, Ota Samek1, Viktor Kanický2, Aleš Hrdlička2, Karel Stejskal4, Vojtěch Adam4, René Kizek4
1Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
2Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
3Faculty of Sciences, University of L'Aquila, Via Vetoio (Coppito 1), 67010 L'Aquila, Italy
4Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemědělská 1, 613 00 Brno, Czech Republic

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pokrant, 2005, Chemical analysis of nanometric dielectric layers using spatially resolved VEELS, Ultramicroscopy, 104, 233, 10.1016/j.ultramic.2005.05.001

Novotný, 2007, The use of zinc and iron emission lines in depth profile analysis in zinc-coated steel, Appl. Surf. Sci., 253, 3834, 10.1016/j.apsusc.2006.08.047

Flynn, 2006, Forensic analysis of biocomponent fibers using infrared chemical imaging, J. Forensic Sci., 51, 586, 10.1111/j.1556-4029.2006.00116.x

Samek, 2001, Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples, Spectrochim. Acta Part B, 56, 865, 10.1016/S0584-8547(01)00198-7

Adam, 2005, Table-top water window transmission X-ray microscopy: Review of the key issues, and conceptual design of an instruments for biology, Rev. Sci. Instrum., 76, 091301, 10.1063/1.2018633

Reale, 2006, Microradiography as a tool to detect heavy metal uptake in plants for phytoremediation applications, Microsc. Res. Tech., 69, 666, 10.1002/jemt.20350

Kaiser, 2005, Mapping of the metal intake in plants by large-field X-ray microradiography and preliminary feasibility studies in microtomography, Eur. Phys. J., D, 32, 113, 10.1140/epjd/e2004-00183-2

Martin, 2004, Elemental analysis of environmental and biological samples using laser-induced breakdown spectroscopy and pulsed Raman spectroscopy, J. Dispers. Sci. Technol., 25, 687, 10.1081/DIS-200027329

DeLucia, 2005, Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection, IEEE Sens. J., 5, 681, 10.1109/JSEN.2005.848151

Becker, 2007, Imaging mass spectrometry in biological tissues by laser ablation coupled plasma mass spectrometry, Eur. J. Mass Spectrom., 13, 1, 10.1255/ejms.833

Miziolek, 2006

Kaiser, 2007, Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy, Microsc. Res. Tech., 70, 147, 10.1002/jemt.20394

Samek, 2006, Femtosecond laser spectrochemical analysis of plant samples, Laser Phys. Lett., 3, 21, 10.1002/lapl.200510051

Galiová, 2007, Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues, Spectrochim. Acta Part B, 62, 1597, 10.1016/j.sab.2007.10.040

Krämer, 2001, The use of transgenic plants in bioremediation of soils contaminated with trace elements, Appl. Microbiol. Biotechnol., 55, 661, 10.1007/s002530100631

Macek, 2002, Accumulation of cadmium by transgenic tobacco, Acta Biotechnol., 22, 101, 10.1002/1521-3846(200205)22:1/2<101::AID-ABIO101>3.0.CO;2-N

Macek, 2000, Exploitation of plants for the removal of organics in environmental remediation, Biotechnol. Adv., 18, 23, 10.1016/S0734-9750(99)00034-8

Supalkova, 2007, Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium(II) and lead(II) ions, Sensors, 7, 743, 10.3390/s7050743

Kotrba, 1999, Heavy metal-binding peptides and proteins in plants. A review, Collect. Czechoslov. Chem. Commun., 64, 1057, 10.1135/cccc19991057

Francova, 2001, Transgenic plants – a potential tool for decontamination of environmental pollutants, Chem. Lett. -Chem. Listy, 95, 630

Garcia, 2006, Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development, J. Agric. Food Chem., 54, 8623, 10.1021/jf061593l

Liphadzi, 2006, Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids, S. Afr. J. Bot., 72, 391, 10.1016/j.sajb.2005.10.010

Marchiol, 2007, Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience, Plant Physiol. Biochem., 45, 379, 10.1016/j.plaphy.2007.03.018

Nehnevajova, 2005, Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis, Int. J. Phytoremediat., 7, 337, 10.1080/16226510500327210

Szabo, 2006, Uptake of microelements by crops grown on heavy metal-amended soil, Commun. Soil Sci. Plant Anal., 37, 2679, 10.1080/00103620600830070

Tandy, 2006, Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration, Environ. Sci. Technol., 40, 2753, 10.1021/es052141c

Wu, 2006, Engineering plant-microbe symbiosis for rhizoremediation of heavy metals, Appl. Environ. Microbiol., 72, 1129, 10.1128/AEM.72.2.1129-1134.2006

Zhang, 2006, A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns, Water Res., 40, 788, 10.1016/j.watres.2005.12.011

Felle, 1997, The cytosolic Ca2+ concentration gradient of Sinapis alba root hairs as revealed by Ca2+−selective microelectrode tests and fura-dextran ratio imaging, Plant Physiol., 114, 39, 10.1104/pp.114.1.39

Sun, 2007, Non-invasive scanning ion-selective electrode technique and its applications to the research of higher plants, Prog. Nat. Sci., 17, 625, 10.1080/10002007088537450

Rissler, 2002, Chlorophyll biosynthesis. Expression of a second Chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis, Plant Physiol., 128, 770, 10.1104/pp.010625

Hampp, 1974, Effect of lead ions on chlorophyll synthesis, Naturwissenschaften, 61, 218, 10.1007/BF00599926

Phetsombat, 2006, Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata, J. Environ. Biol., 27, 645

Saygideger, 2005, Influence of pH on lead uptake, chlorophyll and nitrogen content of Nasturtium officinale R. Br. and Mentha aquatica L, J. Environ. Biol., 26, 753

Pinchasov, 2006, The effect of lead on photosynthesis, as determined by photoacoustics in Synechococcus leopoliensis (Cyanobacteria), Water Air Soil Pollut., 175, 117, 10.1007/s11270-006-9116-z

Garnczarska, 2000, Metabolic responses of Lemna minor to lead ions – I. Growth, chlorophyll level and activity of fermentative enzymes, Acta Physiol. Plant., 22, 423, 10.1007/s11738-000-0083-5

Vacek, 2004, Electrochemical determination of lead and glutathione in a plant cell culture, Bioelectrochemistry, 63, 347, 10.1016/j.bioelechem.2003.08.007

Krizkova, 2008, Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions – plants as bioindicators of environmental pollution, Sensors, 8, 445, 10.3390/s8010445

Stejskal, 2008, Study of effects of lead ions on sugar beet, Lis. Cukrov. Repar., 124, 116

Reimann, 1999, Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data, Environ. Geol., 39, 1001, 10.1007/s002549900081

Limpert, 2001, Log-normal distributions across the sciences: keys and clues, BioScience, 51, 341, 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2