Mapping of flood hazard induced by land subsidence in Semarang City, Indonesia, using hydraulic and spatial models

B. D. Yuwono1, H. Z. Abidin2, Poerbandono3, H. Andreas2, A. S. P. Pratama4, F. Gradiyanto5
1Doctoral Program, Geodesy and Geomatics Engineering, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Bandung, Indonesia
2Geodesy and Geomatics Engineering, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Bandung, Indonesia
3Hydrography Research Group, Geodesy and Geomatics Engineering, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Bandung, Indonesia
4Master Program, Geodesy and Geomatics Engineering, Faculty of Earth Sciences and Technology, Bandung Institute Technology, Bandung, Indonesia
5Civil Engineering Department, Engineering Faculty, Diponegoro University, Semarang, Indonesia

Tóm tắt

Frequent floodings in Semarang City have generated increasing damages and losses in property and life quality. The cause of flooding is related to the coupled impacts of land subsidence, hydraulics hazards along with poor drainage and water retention systems. This paper studies the most recent flooding hazards caused by hydrological origins (i.e., river discharge, tidal) and land subsidence. In the study, riverine origin of flooding is simulated with the help of HEC-RAS 2D, while the tidal origin is simulated to high highest water level. However, due to the absence of the most recent topographic data, the role of land subsidence is measured by estimating the vertical changes of digital elevation model taken from Sentinel 1A. Flooding extent, in terms of depth and coverage, is verified based on satellite imagery Sentinel-2 which is cloud-processed using Google Earth Engine (GEE) and field survey. Fluvial flood is simulated with several boundary condition scenarios using combinations of 5-, 25-, or 50-year return periods of flood which is integrated with mean sea level (MSL) or high highest water level (HHWL) tides. Those boundary conditions are then incorporated into different terrains, namely LiDAR, DEMNAS, and TerraSAR DEM, to see how different digital elevation models (DEMs) can impact model sensitivity. By overlaying model outputs and land cover map, it can be concluded that settlements and water bodies are among the most potentially affected areas, covering up to 17 km2. This study is expected to help policymakers make a primary assessment of combined tidal and fluvial flood hazard through mitigation and adaptation measures.

Tài liệu tham khảo

Abidin HZ, Andreas H, Gumilar I, et al (2010) Studying land subsidence in Semarang (indonesia) using geodetic methods. FIG Congr 11–16. https://www.fig.net/resources/proceedings/fig_proceedings/fig2010/papers/fs04d/fs04d_abidin_andreas_et_al_3748.pdf Abidin HZ, Andreas H, Gumilar I, Fukuda Y, Nurmaulia SL, Riawan E, Murdohardono D, Supriyadi (2012) The impacts of coastal subsidence and sea level rise in coastal city of Semarang (Indonesia). Adv Geosci: Solid Earth Sci 31:59–75 Abidin HZ et al (2013) Land subsidence in coastal city of Semarang (Indonesia): characteristics, impacts and causes. Geomat, Nat Hazards Risk 4(3):226–240. https://doi.org/10.1080/19475705.2012.692336 Abidin H et al (2015) On integration of geodetic observation of land subsidence hazard risk in urban area of Indonesia. Int as Geod Symp. https://doi.org/10.1007/1345 Abidin HZ, Andreas H, Gumilar I et al (2022) On the Disaster Risk Reduction of Land Subsidence in Indonesia’s Northern Coastal Areas of Java. EGU Gen Assem 5194:EGU22–1721. https://meetingorganizer.copernicus.org/EGU22/EGU22-1721.html Aini NI, Filjanah Q (2020) Pola Pengendalian Banjir pada Sungai Tenggang Kecamatan Genuk Kota Semarang Dengan Menggunakan Metode Hec-Ras. 5:96–103. Aldridge BN, Garrett JM (1973) Roughness coefficients for stream channels in Arizona: U.S. geological survey open-file report. 87 Amar M et al (2020) Analisis geospasial korelasi penurunan muka tanah terhadap harga tanah di wilayah kecamatan Semarang utara. J Geod Undip 9(2):63–70 Andnur MO et al (2022) Analisis tinggi muka air laut dan penurunan muka tanah untuk perencanaan tinggi lantai bangunan di Pesisir Utara Kota Semarang. Indones J Oceanogr (IJOCE) 04(02):56–60 Andreas H et al (2017) Adaptation and mitigation of land subsidence in Semarang. AIP Conf Proc. https://doi.org/10.1063/1.4987088 Andreas H, Abidin HZ, Gumilar I, Sidiq TP, Sarsito DA, Pradipta D (2019) On the acceleration of land subsidence rate in Semarang City as detected from GPS surveys, E3S Web of Conferences. In: Proceedings of the international symposium on global navigation satellite sys-tem 2018 (ISGNSS 2018), Bali, 94, 21–23 Nov. 2018, doi: https://doi.org/10.1051/e3sconf/20199404002 Apel H, Aronica GT, Kreibich H, Thieken AH (2009) Flood risk analyses—how detailed do we need to be? Nat Hazards 49(1):79–98 Arcement G J, Schneider V R (1989) Guide for selecting manning's roughness coefficients for natural channels and flood plains. 2339 Atriyon J, Djurdjani (2018) Journal of degraded and mining lands management Azotobacter population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with Azotobacter. J Degrade Min Land Manag 5(53):2502–2458. https://doi.org/10.15243/jdmlm Balai Pengelolaan DAS (BPDAS) (2015) Report on monitoring and evaluation of cacaban watershed management 2015. Semarang: BPDAS Pemali Jratun Brunner GW, Piper SS, Jensen MR, Chacon B (2015) Combined 1D and 2D hydraulic modelling within HEC-RAS. World Environ Water Resour Congr 2015:1432–1443 Brunner GW (2016) HEC-RAS river analysis system: Hydraulic Reference Manual, Version 5.0. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Budiyono Y et al (2015) Flood risk assessment for delta mega-cities: a case study of Jakarta. Nat Hazards 75(1):389–413. https://doi.org/10.1007/s11069-014-1327-9 Chaussard E, Amelung F, Abidin H, Hong SH (2013) Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens Environ 128:150–161. https://doi.org/10.1016/j.rse.2012.10.015 Chow VT (1959) Open-channel hydraulics. New York (NY): McGraw-Hill Higher Education Dasallas L, Kim Y, An H (2019) Case study of HEC-RAS 1D–2D coupling simulation: 2002 Baeksan flood event in Korea. Water 11(10):2048 Dewi A (2007) Community-based analysis of coping with urban flooding: a case study in Semarang, Indonesia. International Institute for Geo-Information Science and Earth Observation Enschede, The Netherlands, p 79 Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: a quantitative analysis. Hydrol Earth Syst Sci 13(6):913–921. https://doi.org/10.5194/hess-13-913-2009 Drbal K, Stepankova P, Levitus V, Rıha J, Drab A, Satrapa L, Horsky M, Valenta P, alentova J, Friedmannova L (2009) Metodika tvorby map povodnoveho nebezpecı a povodnovych rizik [Methodology for creating maps offlood hazard and flood risk]. Brno: VUV TGM. Hammond MJ et al (2013) A framework for flood impact assessment in urban areas. IAHS AISH Publ 357(January):41–47 Han D, Hu Z, Yang M, Wang Y, Chen L, Gao Y (2020) Assessing the impacts of DEM resolution on flood hazard mapping. Water 12(10):2856. https://doi.org/10.3390/w12102856 Handoyo G et al (2016) Genangan banjir rob Di Kecamatan Semarang Utara. J Kelaut Trop 19(1):55. https://doi.org/10.14710/jkt.v19i1.601 Van de Haterd J et al (2021) Environmental change and health risks in coastal Semarang, Indonesia: importance of local indigenous knowledge for strengthening adaptation policies. Cit Health 5(3):276–288. https://doi.org/10.1080/23748834.2020.1729451 Horritt MS, Bates PD (2001) Predicting floodplain inundation: raster-based modelling versus the finite-element approach. Hydrol Process 15(5):825–842. https://doi.org/10.1002/hyp.188 Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. J Hydrol 64:628–638. https://doi.org/10.1016/S0022-1694(02)00121-X Horritt MS, Di Baldassarre G, Bates PD, Brath A (2007) Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery. Hydrol Process: Int J 21(20):2745–2759 Irawan AM, Marfai MA, Nugraheni IR, et al (2021) Comparison between averaged and localised subsidence measurements for coastal floods projection in 2050 Semarang, Indonesia. Urban Clim 35:100760. https://doi.org/10.1016/j.uclim.2020.100760 Ismanto A et al (2012) Model sebaran penurunan tanah di wilayah pesisir Semarang. Ilmu Kelautan—Indones J Mar Sci 14(4):189–196 Istiqomah LN et al (2020) Analisis penurunan muka tanah Kota Semarang metode survei GNSS tahun 2019. J Geod Undip 4(April):86–94 Khattak MS et al (2016) Floodplain mapping Using HEC-RAS and ArcGIS: a case study of Kabul River. Arab J Sci Eng 41(4):1375–1390. https://doi.org/10.1007/s13369-015-1915-3 Kobayashi H (2003) Vulnerability assessment and adaptation strategy to sea-level rise in Indonesian coastal urban areas. Asahi-1, Tsukuba-city, Japan: National institute for land and infrastructure management, ministry of land, infrastructure and transport Kourgialas NN, Karatzas GP (2011) Gestion des inondations et méthode de modélisation sous SIG pour évaluer les zones d’aléa inondation-une étude de cas. Hydrol Sci J 56(2):212–225. https://doi.org/10.1080/02626667.2011.555836 Kuehn F et al (2010) Detection of land subsidence in Semarang, Indonesia, using stable points network (SPN) technique. Environ Earth Sci 60(5):909–921. https://doi.org/10.1007/s12665-009-0227-x Kurniawati W et al (2020) Spatial Expression of Malay Kampung Semarang in facing flood disaster. IOP Conf Ser: Earth Environ Sci 409(1):012049. https://doi.org/10.1088/1755-1315/409/1/012049 Liu Y, Huang H, Dong J (2015) Large-area land subsidence monitoring and mechanism research using the small baseline subset interferometric synthetic aperture radar technique over the Yellow River Delta, China. J Appl Remote Sens 9:096019–096019. https://doi.org/10.1117/1.JRS.9.096019 Liu Z, Merwade V, Jafarzadegan K (2019) Investigating the role of model structure and surface roughness in generating flood inundation extents using one-and two-dimensional hydraulic models. J Flood Risk Manag 12(1):e12347 Lubis AM, Sato T, Tomiyama N, Isezaki N, Yamanokuchi T (2011) Ground subsidence in Semarang-Indonesia investigated by ALOS-PALSAR satellite SAR interferometry. J Asian Earth Sci 40:1079–1088. https://doi.org/10.1016/j.jseaes.2010.12.001 Luo Q, Perissin D, Zhang Y, Jia Y (2014) L- and X-band multi- temporal InSAR analysis of tianjin subsidence. Remote Sens 6:7933–7951. https://doi.org/10.3390/rs6097933 Mahya M, Kok S, Cado van der Leij A (2021) Economic assessment of subsidence in Semarang and Demak, Indonesia. 61. https://www.ecoshape.org/app/uploads/sites/2/2017/08/Economic-assessment-of-subsidence-in-Semarang-and-Demak-Indonesia.pdf Mason DC et al (2010) Flood detection in Urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 48(2):882–894. https://doi.org/10.1109/TGRS.2009.2029236 Marfai MA (2014) Impact of sea level rise to coastal ecology: a case study on the northern part of java island, indonesia. Quaest Geogr 33(1):107–114. https://doi.org/10.2478/quageo-2014-0008 Marfai MA et al (2008) The impact of tidal flooding on a coastal community in Semarang, Indonesia. Environmentalist 28(3):237–248. https://doi.org/10.1007/s10669-007-9134-4 Marfai MA, King L (2008) Tidal inundation mapping under enhanced land subsidence in Semarang, Central Java Indonesia. Nat Hazards 44(1):93–109. https://doi.org/10.1007/s11069-007-9144-z Marfai MA, King L (2007) Monitoring land subsidence in Semarang, Indonesia. Environ Geol 53(3):651–659. https://doi.org/10.1007/s00254-007-0680-3 McInnes KL et al (2003) Impact of sea-level rise and storm surges in a coastal community. Nat Hazards 30(2):187–207. https://doi.org/10.1023/A:1026118417752 Martins R, Leandro J, Chen AS, Djordjević S (2017) A comparison of three dual drainage models: shallow water versus local inertial vs. Diffus Wave J Hydroinform 19:331–348 Mehvar S et al (2018) Developing a framework to quantify potential Sea level rise-driven environmental losses: a case study in Semarang coastal area, Indonesia. Environ Sci Policy 89(February):216–230. https://doi.org/10.1016/j.envsci.2018.06.019 Merz B et al (2010) Review article assessment of economic flood damage. Nat Hazards Earth Syst Sci 10(8):1697–1724. https://doi.org/10.5194/nhess-10-1697-2010 Moore ID et al (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30. https://doi.org/10.1002/hyp.3360050103 Murdohardono D, Tobing TMHL, Sayekti A (2007) Over Pumping ff Ground Water as one of Causes of Sea Water Inundation in Semarang City, Paper presented at the International Symposium and Workshop on Current Ptidal floodinflems in Groundwater Management and Related Water Reosurces Issues, Kuta, Bali, 3-8 December 2007 National Agency for Disaster Management; Badan Nasional Penanggulan Bencana, Agency: BNPB (2016) ‘Resiko Bencana Indonesia'. https://bnpb.go.id/storage/app/media//uploads/24/buku-rbi-1.pdf Negese A, Ayalew D, Shitaye A, Getnet H (2022) Potential flood-prone area identification and mapping using gis-based multi-criteria decision-making and analytical hierarchy process in Dega Damot District Northwestern Ethiopia. Appl Water Sci 12(12):255. https://doi.org/10.1007/s13201-022-01772-7 Prasetyo Y et al (2013) Data optimalization in permanent scatterer interferometric synthetic aperture radar (PS-INSAR) technique for land subsidence estimation. In: 34th asian conference on remote sensing 2013, ACRS 2013, 2, pp 1064–1072 Prasetyo Y et al (2018) Spatial analysis of land subsidence and flood pattern based on DInSAR method in sentinel sar imagery and weighting method in geo-hazard parameters combination in North Jakarta Region. IOP Conf Ser: Earth Environ Sci. https://doi.org/10.1088/1755-1315/123/1/012009 Pratikno N, Handayani W (2014) Pengaruh genangan banjir rob terhadap dinamika sosial ekonomi masyarakat kelurahan Bandarharjo, Semarang. Tek PWK (perencanaan Wilayah Kota) 3(2):312–318 Pujiastuti R et al (2016) Pengaruh land subsidence terhadap genangan banjir dan rob di Semarang timur. Med Komun Tek Sipil 21(1):1. https://doi.org/10.14710/mkts.v21i1.11225 Putra ISW et al (2020) Penilaian kerusakan dan kerugian infrastruktur publik akibat dampak bencana banjir Di Kota Semarang. Wahana Tek Sipil: J Pengemb Tek Sipil 25(2):86. https://doi.org/10.32497/wahanats.v25i2.2154 Qi H, Altinakar MS (2011) A GIS-based decision support system for integrated flood management under uncertainty with two dimensional numerical simulations. Environ Model Softw 26(6):817–821. https://doi.org/10.1016/j.envsoft.2010.11.006 Qin Z, Qin C, Zhang J, Huang Q, Zhang Y, Huang Y (2018) Sensitivity of flood simulation to DEM resolution, spatial rainfall resolution, and flow direction algorithm in SWAT. Water 10(7):887. https://doi.org/10.3390/w10070887 Quiroga VM, Kurea S, Udoa K, Manoa A (2016) Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: application of the new HEC-RAS version 5. Ribagua 3(1):25–33 Razali N, Ismail S, Mustapha A (2020) Machine learning approach for flood risks prediction. IAES Int J Artif Intell 9:73–80. https://doi.org/10.11591/ijai.v9.i1 Regional Agency for Disaster Management: Badan Penanggulangan Bencana Daerah: (BPBD), Semarang City (2022). https://semarisk.bpbd.semarangkota.go.id/download/1_PETA%20ANCAMAN%20BANJIR.pdf Setioko B et al (2013) Towards sustainable urban growth: the unaffected fisherman settlement setting (with case study Semarang coastal area). Procedia Environ Sci 17:401–407. https://doi.org/10.1016/j.proenv.2013.02.053 Srivastava A, Tiwari A, Narayan AB, Dikshit O (2022) InSAR phase unwrapping using Graph neural networks, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11010, https://doi.org/10.5194/egusphere-egu22-11010 Suhelmi IR et al (2014) Potential economic losses due to tidal inundation and flood at Semarang City. Forum Geografi 28(2):113–118. https://doi.org/10.23917/forgeo.v28i2.428 Supriyadi (2008). Separation of gravity anomaly caused subsidence and ground water level lowering of time lapse microgravity data using model based filter: case study Semarang aluvial plain (in Indonesian), PhD Dissertation. Institute of Technology Bandung, September, 146 pp Tarekegn TH et al (2010) Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modeling. Int J Appl Earth Obs Geoinf 12(6):457–465. https://doi.org/10.1016/j.jag.2010.05.007 Uddin K, Matin MA (2021) Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology. Prog Disaster Sci 11:100185. https://doi.org/10.1016/j.pdisas.2021.100185 Utami I, Marzuki M (2020) Analisis sistem informasi banjir berbasis media twitter. J Fis Unand 9(1):67–72 Vojtek M, Vojteková J (2016) Flood hazard and flood risk assessment at the local spatial scale: a case study. Geomat Nat Hazards Risk 7(6):1973–1992. https://doi.org/10.1080/19475705.2016.1166874 Ward PJ, Marfai MA, Yulianto F, et al (2011) Coastal inundation and damage exposure estimation: a case study for Jakarta. Nat Hazards 56:899–916. https://doi.org/10.1007/s11069-010-9599-1 Warren SD, Hohmann MG, Auerswald K, Mitasova H (2004) An evaluation of methods to determine slope using digital elevation data. CATENA 58:215–233. https://doi.org/10.1016/j.catena.2004.05.001 Waskitaningsih N (2012) Kearifan lokal masyarakat sub-sistem drainase bringin dalam menghadapi banjir. J Pembang Wil Kota 8(4):383. https://doi.org/10.14710/pwk.v8i4.6495 Wechsler SP (2006) Uncertainties associated with digital elevation models for hydrologic applications: a review. Hydrol Earth Syst Sci Discuss 3:2343–2384. https://doi.org/10.5194/hessd-3-2343-2006 Wedajo GK (2017) LiDAR DEM data for flood mapping and assessment; opportunities and challenges: a review. J Remote Sens GIS 06:2015–2018. https://doi.org/10.4172/2469-4134.1000211 Wirawan AR et al (2019) Pengamatan penurunan muka tanah Kota Semarang metode survei GNSS Tahun 2018. J Geod Undip 8(1):418–427 Wismarini TD, Ningsih DHU (2010) Analisis sistem drainase Kota Semarang berbasis sistem informasi geografi dalam membantu pengambilan keputusan bagi penanganan banjir. J Teknol Inf DINAMIK 15(1):41–51 Xu K, Fang J, Fang Y, et al (2021) The importance of digital elevation model selection in flood simulation and a proposed method to reduce dem errors: a case study in shanghai. Int J Disaster Risk Sci 12:890–902. https://doi.org/10.1007/s13753-021-00377-z Yastika PE et al (2019) Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Adv Space Res 63(5):1719–1736. https://doi.org/10.1016/j.asr.2018.11.008 Yunus S (2021) Delineation of urban flood risk areas using geospatial technique. Fudma J Sci 1(5):1–10 Yuwono BD et al (2016) Preliminary survey and performance of land subsidence in North Semarang Demak. AIP Conf Proc 1730(May):1–12. https://doi.org/10.1063/1.4947410 Yuwono BD et al (2019) Land subsidence monitoring 2016–2018 analysis using GNSS CORS UDIP and DinSAR in Semarang. KnE Eng 2019:95–105. https://doi.org/10.18502/keg.v4i3.5832 Zainuri M et al (2022) An improve performance of geospatial model to access the tidal flood impact on land use by evaluating sea level rise and land subsidence parameters. J Ecol Eng 23(2):1–11. https://doi.org/10.12911/22998993/144785