Mapping forest canopy height globally with spaceborne lidar
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, 2006, The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire, Remote Sens. Environ., 105, 248, 10.1016/j.rse.2006.07.001
Baccini, 2008, A first map of tropical Africa's above-ground biomass derived from satellite imagery, Environ. Res. Lett., 3, 045011, 10.1088/1748-9326/3/4/045011
Baldocchi, 2008, “Breathing” of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 56, 1, 10.1071/BT07151
Baldocchi, 2001, FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82, 2415, 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
Boudreau, 2008, An analysis of regional forest biomass using airborne and spaceborne lidar in Quebec, Remote Sens. Environ., 112, 3876, 10.1016/j.rse.2008.06.003
Brenner, 2003, Derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights, algorithm theoretical basis document, 33
Chen, 2010, Retrieving canopy height of forests and woodlands over mountainous areas in the Pacific coast region using satellite laser altimetry, Remote Sens. Environ., 114, 1610, 10.1016/j.rse.2010.02.016
Drake, 2002, Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest, Remote Sens. Environ., 81, 378, 10.1016/S0034-4257(02)00013-5
Duncanson, 2010, Estimating forest canopy height and terrain relief from GLAS waveform metrics, Remote Sens. Environ., 114, 138, 10.1016/j.rse.2009.08.018
Goetz, 2007, Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species in an eastern temperate forest, USA, Remote Sens. Environ., 108, 254, 10.1016/j.rse.2006.11.016
Hagolle, 2005, Quality assessment and improvement of temporally composited products of remotely sensed imagery by combination of VEGETATION 1 and 2 images, Remote Sens. Environ., 94, 172, 10.1016/j.rse.2004.09.008
Hansen, 2003, Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm, Earth Interact., 7, 1, 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
Harding, 2005, ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure, Geophys. Res. Lett., 32, L21S10, 10.1029/2005GL023471
Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276
Keith, 2009, Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests, Proc. Natl. Acad. Sci. U. S. A., 106, 11635, 10.1073/pnas.0901970106
Kimes, 2006, Predicting lidar measured forest vertical structure from multi-angle spectral data, Remote Sens. Environ., 100, 503, 10.1016/j.rse.2005.11.004
Kummerow, 1998, The Tropical Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15, 809, 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
Lee, 2011, Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA, Remote Sens. Environ., 115, 2776, 10.1016/j.rse.2010.08.026
Lefsky, 2010, A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System, Geophys. Res. Lett., 37, L15401, 10.1029/2010GL043622
Lefsky, 2002, Lidar remote sensing of above-ground biomass in three biomes, Glob. Ecol. Biogeogr., 11, 393, 10.1046/j.1466-822x.2002.00303.x
Lefsky, 2005, Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity, Remote Sens. Environ., 95, 549, 10.1016/j.rse.2004.12.022
Lefsky, 2005, Estimates of forest canopy height and aboveground biomass using ICESat, Geophys. Res. Lett., 32, L22S02, 10.1029/2005GL023971
Olson, 2001, Terrestrial ecoregions of the world: A new map of life on earth, BioScience, 51, 933, 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Powell, 2010, Quantification of live aboveground biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches, Remote Sens. Environ., 114, 1053, 10.1016/j.rse.2009.12.018
Prasad, 2006, Newer classification and regression tree techniques: Bagging and random forests for ecological prediction, Ecosystems, 9, 181, 10.1007/s10021-005-0054-1
Rosette, 2008, Vegetation height estimates for a mixed temperate forest using satellite laser altimetry, Int. J. Remote Sens., 29, 1475, 10.1080/01431160701736380
Saatchi, 2011, Benchmark map of forest carbon stocks in tropical regions across three continents, Proc. Natl. Acad. Sci. U. S. A., 108, 9899, 10.1073/pnas.1019576108
Simard, 2008, Characterizing vegetation 3D structure globally using spaceborne lidar and radar, Eos Trans. AGU, 89
Sun, 2008, Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data, Remote Sens. Environ., 112, 107, 10.1016/j.rse.2006.09.036
Thomas, 2008, Using lidar data and height-structured ecosystem model to estimate forest carbon stocks and fluxes over mountainous terrain, Can. J. Rem. Sens., 34, S351, 10.5589/m08-036
U.S. Geological Survey, 2006, Shuttle Radar Topography Mission, 30 Arc Second product
Whitcomb, 2009, Mapping vegetated wetlands of Alaska using L-band radar satellite imagery, Can. J. Remote Sens., 35, 54, 10.5589/m08-080
Yang, 2011, Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model, Remote Sens. Environ., 115, 2810, 10.1016/j.rse.2010.02.021