Mapping and Assessing Landfills Surface Temperature Using Landsat 8 Satellite Data. A Case Study in Vietnam

Izvestiya, Atmospheric and Oceanic Physics - Tập 57 Số 9 - Trang 1098-1107 - 2021
Trịnh Lê Hùng1, V. R. Zablotskii2, Danh Tuyen Vu3, I.V. Zenkov4, Thi Hanh Tong1
1Le Quy Don Technical University, Hanoi, Vietnam
2Moscow State University of Geodesy and Cartography, 105064, Moscow, Russia
3Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
4Siberian Federal University, 660041 Krasnoyarsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Boori, M.S., Vozenilek, V., Balter, H., and Choudhary, K., Land surface temperature with land cover classes in Aster and Landsat data, J. Remote Sens. GIS, 2015, vol. 4, no. 138, pp. 1–4. https://doi.org/10.4172/2169-0049.1000138

Bui, Q.T., Urban heat island analysis in Ha Noi: Examining the relationship between land surface temperature and impervious surface, in Conference of Application of GIS, 2015, pp. 674–677.

Chavez, P., Image-based atmospheric corrections: Revisited and improved, Photogramm. Eng. Remote Sens., 1996, vol. 62, no. 9, pp. 1025–1036.

Chen, F., Yang, S., Su, Z., and Baoyin, H., A new single-channel method for estimating land surface temperature based on the image inherent information: The HJ-1B case, ISPRS J. Photogramm. Remote Sens., 2015, vol. 101, pp. 80–88.

Dancheva, A., Spasova, T., and Borisova, D., Evaluation of temperature changes in waste disposal sites according to satellite data, in Proc. SPIE 11174, 17th International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), 2019, 11174Q. https://doi.org/10.1117/12.2533609

Du, C., Ren, H., Qin, Q., Meng, J., and Li, J., Split-window algorithm for estimating land surface temperature from Landsat 8 TIRS data, in International Geosciences Remote Sensing Symposium, 2014, pp. 3578–3581. https://doi.org/10.1109/IGARSS.2014.6947256

ENVI, Atmospheric correction module: QUAC and FLAASH user’s guide, 2009. https://www.l3harrisgeospatial.com/portals/0/pdfs/envi/Flaash_Module.pdf. Accessed December 15, 2020.

Galve, J.M., Coll, C., Caselles, V., Valor, E., and Mira, M., Comparison of split-window and single-channel methods for land surface temperature retrieval from MODIS and ASTER data, in International Geoscience Remote Sensing Symposium, 2008, vol. 3, pp. 294–297. https://doi.org/10.1109/IGARSS.2008.4779341

Gill, J., Faisal, K., Shaker, A., and Yan, W., Detection of waste dumping locations in landfill using multi-temporal Landsat thermal images, Waste Manage. Res., 2019, vol. 37, no. 4, pp. 386–393. https://doi.org/10.1177/0734242X18821808

Guha, S., Govil, H., Dey, A., and Gill, N., Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy, Eur. J. Remote Sens., 2018, vol. 51, no. 1, pp. 667–678. https://doi.org/10.1080/22797254.2018.1474494

Guo, Y. and Zeng, F., Atmospheric correction comparison of Spot-5 image based on model Flaash and model Quac, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2012, vol. XXXIX-B7, pp. 7–11.

https://earthexplorer.usgs.gov/. Accessed December 15, 2019.

Huazhong, R., Du, C., Qin, Q., and Liu, R., Atmospheric water vapor retrieval from Landsat 8 and its validation, in IEEE International Geoscience and Remote Sensing Symposium, 2014, pp. 3045–3048. https://doi.org/10.1109/IGARSS.2014.6947119

Iacoboaea, C. and Petrescu, F., Landfill monitoring using remote sensing: a case study of Glina, Romania, Waste Manage. Res., 2013, vol. 31, no. 10, pp. 1075–1080.

Jiménez-Muñoz, J.C, Sobrino, J.A., Skoković, D., Mattar, C., and Cristóbal, J., LST retrieval methods from Landsat-8 thermal infrared sensor data, IEEE Geosci. Remote Sens. Lett., 2014, vol. 11, no. 10, pp. 1840–1843. https://doi.org/10.1109/LGRS.2014.2312032

Lee, S.B., La, H.P., Eo, Y.D., and Pyeon, M.W., Generation of simulated image from atmospheric corrected Landsat TM images, J. Korean Soc. Surv. Geod. Photogramm. Cartogr., 2015, vol. 33, no. 1, pp. 1–9.

Li, S. and Jiang, G., Land surface temperature retrieval from Landsat-8 data with the generalized split-window algorithm, IEEE Access, 2018, vol. 6, pp. 18149–18162, https://doi.org/10.1109/ACCESS.2018.2818741

Mahmood, K., Batool, S.A., Chaudhry, M.N., Studying bio-thermal effects at and around MSW dumps using satellite remote sensing and GIS, Waste Manage. Res., 2016, vol. 55, pp. 118–128.

Mahmood, K., Batool, S.A., Faizi, F., Chaudhry, M.N., Ul-Haq, Z., Rana, A.D., and Tariq, S., Bio-thermal effects of open dumps on surroundings detected by remote sensing: Influence of geographical conditions, Ecol. Indic., 2017, vol. 82, pp. 131–142.

Nguyen, Q.K., Trinh, L.H., Dao, K.H., and Dang, N.D., Land surface temperature dynamics in dry season 2015–2016 according to Landsat 8 data in the Southeast region of Vietnam, Geogr. Environ. Sustain., 2019, vol. 12, no. 1, pp. 77–89.

Pal, S. and Ziaul, S., Detection of land use and land cover change and land surface temperature in English Bazar urban centre, Egypt. J. Remote Sens. Space Sci., 2017, vol. 20, no. 1, pp. 125–145.

Qdais, H.A. and Shatnawi, N., Assessing and predicting landfill surface temperature using remote sensing and an artificial neural network, Int. J. Remote Sens., 2019, vol. 40, no. 24, pp. 9556–9571.

Rongali, G., Keshari, A.K., Gosain, A.K., and Khosa, R., Split-window algorithm for retrieval of land surface temperature using Landsat 8 thermal infrared data, J. Geovisualization Spat. Anal., 2018, vol. 2, no. 2, pp. 1–19.

Rouse, J.W., Hass, R.H., Schell, J.A., and Deering, D.W., Monitoring vegetation systems in the Great Plains with ERTS, in Earth Resources Technology Satellite-1 Symposium, Washington, DC, 1973, vol. 3, pp. 309–317.

Rozenstein, O., Qin, Z., Derimian, Y., and Karnieli, A., Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm, Sensors, 2014, vol. 14, pp. 5768–5780. https://doi.org/10.3390/s140405768

Sobrino, J.A., Jiménez-Muñoz, J.C., Zarco-Tejada, P.J., Sepulcre-Cantó, G., and de Miguel, E., Land surface temperature derived from airborne hyperspectral scanner thermal infrared data, Remote Sens. Environ., 2006, vol. 102, pp. 99–115.

Tran, T.V., Hoang, T.L., Le, V.T., Thermal remote sensing method in study on urban surface temperature distribution, Vietnam J. Earth Sci., 2009, vol. 31, no. 2, pp. 168–177.

Trinh, L.H., Combined use of Landsat 8 and Sentinel 2 images for enhanced spatial resolution of land surface temperature, VNU J. Sci.: Earth Environ. Sci., 2018, vol. 34, no. 4, pp. 54–63.

Trinh, L.H. and Vu, D.T., Comparison of single-channel and split-window methods for estimating land surface temperature from Landsat 8 data, VNU J. Sci.: Earth Environ. Sci., 2019, vol. 35, no. 2, pp. 33–44.

Valor, E. and Caselles, V., Mapping land surface emissivity from NDVI. Application to European African and South American areas, Remote Sens. Environ., 1996, vol. 57, pp. 167–184.

Vlassova, L., Perez-Cabello, F., Nieto, H., Martin, P., Riaflo, D., and de la Riva, J., Assessment of methods for land surface temperature retrieval from Landsat 5 TM images applicable to multiscale tree-grass ecosystem modeling, Remote Sens., 2014, vol. 6, pp. 4345–4368. https://doi.org/10.3390/rs6054345

Wang, Z., Zia, J., Wang, L., Mao, Z., Zeng, Q., Tian, L., and Shi, L., Atmospheric correction methods for GF-1 WFV1 data in hazy weather, J. Indian Soc. Remote Sens., 2017, vol. 46, pp. 355–366.

Wolfe, R.E., Nishihama, M., Fleig, A.J., Kuyper, J.A., Roy, D.P., Storey, J.C., and Patt, F.S., Achieving sub-pixel geolocation accuracy in support of MODIS land science, Remote Sens. Environ., 2002, vol. 83, nos. 1–2, pp. 31–49.

Wy, Y., Mahendrarajad, P., Shaker, A., Faisal, K., Luong, R., and Al-Admand, M., Analysis of multi-temporal Landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites, Environ. Monit. Assess., 2014, vol. 186, no. 12, pp. 8161–8173. http://landsat.gsfc.nasa.gov. Accessed January 12, 2020.

Yu, X., Guo, X., and Wu, X., Land surface temperature retrieval from Landsat 8 TIRS: Comparison between radiative transfer equation based method, split window algorithm and single channel method, Remote Sens., 2014, vol. 6, pp. 9829–9852. https://doi.org/10.3390/rs6109829