Mapping analytic sets onto cubes by little Lipschitz functions

Jan Malý1, Ondřej Zindulka2
1Department of Mathematics, Faculty of Science, J. E. Purkyně University, Ústí nad Labem, Czech Republic
2Department of Mathematics, Faculty of Civil Engineering, Czech Technical University, Prague 6, Czech Republic

Tóm tắt

Từ khóa


Tài liệu tham khảo

Balogh, Z.M., Csörnyei, M.: Scaled-oscillation and regularity. Proc. Amer. Math. Soc. 134(9), 2667–2675 (2006)

Bartoszyński, T.: Additivity of measure implies additivity of category. Trans. Amer. Math. Soc. 281(1), 209–213 (1984)

Bartoszyński, T., Judah, H.: Set Theory. A K Peters, Wellesley (1995)

Buczolich, Z., Hanson, B.H., Rmoutil, H., Zürcher, T.: On sets where $${{\rm lip}}\,f$$ lip f is finite (2017). arXiv:1708.08220v1 (to appear in Studia Math.)

Edgar, G.A.: Packing measure in general metric space. Real Anal. Exchange 26(2), 831–852 (2000/2001)

Edgar, G.A.: Centered densities and fractal measures. New York J. Math. 13, 33–87 (2007)

Engelking, R.: General Topology. Sigma Series in Pure Mathematics, vol. 6, 2nd edn. Heldermann, Berlin (1989)

Falconer, K.J.: Fractal Geometry, 2nd edn. Wiley, Hoboken (2003)

Fremlin, D.H.: Measure Theory, vol. 5. Part I. Torres Fremlin, Colchester (2015)

Hanson, B.H.: Sets of non-differentiability for functions with finite lower scaled oscillation. Real Anal. Exchange 41(1), 87–99 (2016)

Hanson, B.H., Pierce, P., Zelený, M., Zindulka, O.: Dimension inequality for lower lipschitz mappings (in preparation)

Joyce, H., Preiss, D.: On the existence of subsets of finite positive packing measure. Mathematika 42(1), 15–24 (1995)

Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)

Keleti, T.: A peculiar set in the plane constructed by Vituškin, Ivanov and Melnikov. Real Anal. Exchange 201, 291–312 (1994/1995)

Keleti, T., Máthé, A., Zindulka, O.: Hausdorff dimension of metric spaces and Lipschitz maps onto cubes. Int. Math. Res. Not. IMRN 2014(2), 289–302 (2014)

Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)

Mendel, M., Naor, A.: Ultrametric subsets with large Hausdorff dimension. Invent. Math. 192(1), 1–54 (2013)

Milne, S.C.: Peano curves and smoothness of functions. Adv. Math. 35(2), 129–157 (1980)

Nekvinda, A., Zindulka, O.: Monotone metric spaces. Order 29(3), 545–558 (2012)

Vitushkin, A.G., Ivanov, L.D., Melnikov, M.S.: Incommensurability of the minimal linear measure with the length of a set. Dokl. Akad. Nauk SSSR 151, 1256–1259 (1963)

Zindulka, O.: Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps. Fund. Math. 218(2), 95–119 (2012)