Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Oke, 1973, City size and the urban heat island, Atmos. Environ., 7, 769, 10.1016/0004-6981(73)90140-6
Ching, 2013, A perspective on urban canopy layer modeling for weather, climate and air quality applications, Urban. Clim., 3, 13, 10.1016/j.uclim.2013.02.001
Satterthwaite, A.D.E., Aragón-Durand, F., Corfee-Morlot, J., Kiunsi, M., Pelling, M., Roberts, D.C., and Solecki, W. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-FrontMatterA_FINAL.pdf.
Esch, 2010, Delineation of urban footprints from Terrasar-X data by analyzing speckle characteristics and intensity information, IEEE Trans. Geosci. Remote Sens., 48, 905, 10.1109/TGRS.2009.2037144
Gamba, 2011, Robust extraction of urban area extents in HR and VHR SAR images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 4, 27, 10.1109/JSTARS.2010.2052023
Esch, 2013, Urban footprint processor—Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission, IEEE Geosci. Remote Sens. Lett., 10, 1617, 10.1109/LGRS.2013.2272953
Miyazaki, 2013, An automated method for global urban area mapping by integrating ASTER satellite images and GIS data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 1004, 10.1109/JSTARS.2012.2226563
Pesaresi, 2013, A Global Human Settlement Layer from optical HR/VHR RS data: Concept and first results, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 2102, 10.1109/JSTARS.2013.2271445
Ching, J., Mills, G., Feddema, J.J., Oleson, K., See, L., Stewart, I.D., Bechtel, B., Chen, F., Wang, X., and Neophytou, M.K.A. WUDAPT: Facilitating Advanced Urban Canopy Modeling for Weather, Climate and Air Quality Applications. Available online: https://ams.confex.com/ams/94Annual/webprogram/Paper236443.html.
See, L., Bechtel, B., Ching, J.K.S., Feddema, J.J., Foley, M., Fritz, S., Masson, V., Mills, G., Perger, C., and Stewart, I.D. (2015). Developing a community-based worldwide urban database of morphology and materials using remote sensing and crowdsourcing for improved urban climate/UHI modeling. Lausanne, submitted.
Stewart, 2012, Local climate zones for urban temperature studies, Bull. Am. Meteorol. Soc., 93, 1879, 10.1175/BAMS-D-11-00019.1
Bechtel, 2012, Classification of local climate zones based on multiple earth observation data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 1191, 10.1109/JSTARS.2012.2189873
Stewart, 2011, A systematic review and scientific critique of methodology in modern urban heat island literature, Int. J. Climatol., 31, 200, 10.1002/joc.2141
Ndetto, E.L., and Matzarakis, A. Urban Atmospheric Environment and Human Biometeorological Studies in Dar es Salaam, Tanzania. Available online: http://link.springer.com/article/10.1007/s11869-014-0261-z.
Fenner, 2014, Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010, Urban. Clim., 10, 308, 10.1016/j.uclim.2014.02.004
Stewart, 2014, Evaluation of the “local climate zone” scheme using temperature observations and model simulations, Int. J. Climatol., 34, 1062, 10.1002/joc.3746
Alexander, 2014, Local climate classification and Dublin’s urban heat island, Atmosphere, 5, 755, 10.3390/atmos5040755
Lelovics, 2014, Design of an urban monitoring network based on local climate zone mapping and temperature pattern modelling, Clim. Res., 60, 51, 10.3354/cr01220
Gamba, P., Lisini, G., Liu, P., Du, P., and Lin, H. (2012, January 7–9). Urban climate zone detection and discrimination using object-based analysis of VHR scenes. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil.
Wurm, M., Taubenbock, H., Roth, A., and Dech, S. (2009, January 20–22). Urban structuring using multisensoral remote sensing data: By the example of the German cities Cologne and Dresden. Proceedings of Urban Remote Sensing Event, 2009 Joint, Shanghai, China.
Heiden, 2012, Urban structure type characterization using hyperspectral remote sensing and height information, Landsc. Urban Plan., 105, 361, 10.1016/j.landurbplan.2012.01.001
Walde, 2014, From land cover-graphs to urban structure types, Int. J. Geogr. Inf. Sci., 28, 584, 10.1080/13658816.2013.865189
Weng, 2009, Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends, ISPRS J. Photogramm. Remote Sens., 64, 335, 10.1016/j.isprsjprs.2009.03.007
Wulder, 2012, Opening the archive: How free data has enabled the science and monitoring promise of Landsat, Remote Sens. Environ., 122, 2, 10.1016/j.rse.2012.01.010
Huttner, S., Bruse, M., and Dostal, P. Using ENVI-Met to Simulate the Impact of Global Warming on the Microclimate in Central European Cities. Available online: http://envi-met.net/documents/papers/Huttner_etal_2008.pdf.
Chen, 2011, The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems, Int. J. Climatol., 31, 273, 10.1002/joc.2158
Jackson, 2010, Parameterization of urban characteristics for global climate modeling, Ann. Assoc. Am. Geogr., 100, 848, 10.1080/00045608.2010.497328
Song, 2001, Classification and change detection using Landsat TM data: When and how to correct atmospheric effects?, Remote Sens. Environ., 75, 230, 10.1016/S0034-4257(00)00169-3
Knight, 2014, Landsat-8 operational land imager design, characterization and performance, Remote Sens., 6, 10286, 10.3390/rs61110286
Conrad, O. SAGA. Aufbau, Funktionsweise und Anwendung eines Systems für geowissenschaftiche Analysen. Available online: http://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0006-B26C-6/conrad.pdf?sequence=1.
Köthe, U. (2000). Generische Programmierung für die Bildverarbeitung, BoD–Books on Demand.
Gorelick, N. Google Earth Engine. Available online: http://adsabs.harvard.edu/abs/2012AGUFM.U31A.04G.
Canters, 2011, Inferring urban land use using the optimised spatial reclassification kernel, Environ. Model. Softw., 26, 1279, 10.1016/j.envsoft.2011.05.012
Blaschke, 2010, Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens., 65, 2, 10.1016/j.isprsjprs.2009.06.004