Mapping Human Cortical AreasIn VivoBased on Myelin Content as Revealed by T1- and T2-Weighted MRI

Journal of Neuroscience - Tập 31 Số 32 - Trang 11597-11616 - 2011
Matthew F. Glasser1, David C. Van Essen2
1Dept. of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
2Neuroscience,

Tóm tắt

Noninvasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject were mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface—i.e., putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multimodal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared with macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates.

Từ khóa


Tài liệu tham khảo

10.1016/j.pneurobio.2009.07.010

10.1523/JNEUROSCI.4739-05.2006

10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7

10.1006/nimg.1999.0516

10.1007/s00429-005-0025-5

Amunts, 2010, Broca's region: novel organizational principles and multiple receptor mapping, PLoS Biol, 8, 330, 10.1371/journal.pbio.1000489

Augustinack, 2010, Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging, Front Hum Neurosci, 4, 42

10.1002/cne.902560203

10.1002/cne.902860306

10.1002/mrm.10255

10.1002/cne.21892

10.1097/00001756-200006260-00021

10.1016/j.jneumeth.2009.08.022

10.1007/BF00316652

10.1007/BF00304663

Braak, 1979, Pigment architecture of the human telencephalic cortex. IV. Regio retrosplenialis, Cell Tissue Res, 204, 431, 10.1007/BF00233654

10.1007/BF00315640

10.1007/BF00233655

10.1167/5.2.1

Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues (Barth, Leipzig).

Brodmann K Garey L (2006) Brodmann's Localisation in the cerebral cortex: the principles of comparative localisation in the cerebral cortex based on the cytoarchitectonics (Springer, New York).

10.1002/cne.21976

10.1016/j.neuroimage.2006.06.054

10.1007/s00429-008-0195-z

10.1002/hbm.20162

10.1093/cercor/2.5.417

10.1111/j.1460-9568.1994.tb00984.x

10.1002/cne.902980205

10.1016/j.neuroimage.2008.01.066

10.1073/pnas.1010356107

10.1002/cne.20237

10.1006/nimg.1998.0395

10.1046/j.1460-9568.2003.02915.x

10.1002/cne.22053

10.1002/cne.10731

Dum, 1991, The origin of corticospinal projections from the premotor areas in the frontal lobe, J Neurosci, 11, 667, 10.1523/JNEUROSCI.11-03-00667.1991

10.1016/j.neuroimage.2004.12.034

10.1002/hbm.20082

10.1093/cercor/bhi105

10.1093/cercor/bhi106

10.1002/hbm.20205

Elston, 2001, The pyramidal cell in cognition: a comparative study in human and monkey, J Neurosci, 21, 163, 10.1523/JNEUROSCI.21-17-j0002.2001

10.1016/S0896-6273(00)80758-8

Fatterpekar, 2002, Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla, Am J Neuroradiol, 23, 1313

10.1073/pnas.200033797

10.1006/nimg.1998.0396

10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4

10.1109/42.906426

10.1016/j.neuroimage.2004.07.016

10.1093/cercor/bhm225

10.1073/pnas.0911177107

Fuster JM (1995) in Brain and memory: modulation and mediation of neuroplasticity, Gradients of Cortical Plasticity, eds McGaugh JL Weinberger NM Lynch G (Oxford UP, New York).

10.1016/S0166-2236(97)01128-4

10.1523/JNEUROSCI.4753-08.2009

Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol, 174.

10.1038/382805a0

10.1006/nimg.1999.0440

10.1006/nimg.2000.0548

10.3389/fnhum.2011.00019

10.1093/cercor/bhn011

Glasser M Laumann T Coalson T Cohen A Snyder A Schlaggar B Petersen S Van Essen D (2011) 17th Annual Meeting of Organization for Human Brain Mapping (June, Quebec City), Comparison of surface gradients derived from myelin maps and functional connectivity analysis.

10.1111/j.1469-7580.2005.00426.x

10.1006/nimg.2001.0858

10.1002/cne.1407

10.1016/j.neuroimage.2005.08.058

10.1523/JNEUROSCI.2991-07.2007

He, 1993, Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere, J Neurosci, 13, 952, 10.1523/JNEUROSCI.13-03-00952.1993

He, 1995, Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere, J Neurosci, 15, 3284, 10.1523/JNEUROSCI.15-05-03284.1995

10.1073/pnas.1001229107

10.1016/j.neuroimage.2009.03.036

Hopf, 1955, Über die Verteilung myeloarchitektonischer Merkmale in der isokortikalen Schläfenlappenrinde beim Menschen, J Hirnforsch, 2, 36

Hopf, 1956, Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen, J Hirnforsch, 2, 311

Hopf, 1957, Über die Verteilung myeloarchitektonischer Merkmale in der Scheitellappenrinde beim Menschen, J Hirnforschung, 3, 79

Huk, 2002, Retinotopy and functional subdivision of human areas MT and MST, J Neurosci, 22, 7195, 10.1523/JNEUROSCI.22-16-07195.2002

10.1016/S0304-3940(02)00019-8

10.1016/S1053-8119(02)91132-8

10.1073/pnas.0403743101

10.1073/pnas.1002825107

10.1148/radiol.2502080266

10.1002/1096-9861(20001023)426:3<339::AID-CNE1>3.0.CO;2-8

10.1002/mrm.1910200210

10.1523/JNEUROSCI.2069-10.2010

10.1016/S0896-6273(04)00047-9

Krubitzer, 1990, The organization and connections of somatosensory cortex in marmosets, J Neurosci, 10, 952, 10.1523/JNEUROSCI.10-03-00952.1990

Krubitzer, 1995, A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys, J Neurosci, 15, 3821, 10.1523/JNEUROSCI.15-05-03821.1995

Kurth, 2009, Cytoarchitecture and probabilistic maps of the human posterior insular cortex, Cereb Cortex, 20, 1448, 10.1093/cercor/bhp208

10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9

Lobel, 2001, Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation, J Neurosurg Pediatrics, 95, 804, 10.3171/jns.2001.95.5.0804

Mai J Assheuer J Paxinos G (1997) Atlas of the human brain (Academic, New York).

10.1093/cercor/bhj181

10.1016/j.neuroimage.2009.10.002

10.1002/cne.903110402

10.1002/cne.902120102

10.1016/S0165-0270(96)00148-3

Morosan, 2001, Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system, Neuroimage, 13, 684, 10.1006/nimg.2000.0715

10.1002/(SICI)1096-9861(20000522)421:1<14::AID-CNE2>3.0.CO;2-S

10.1016/j.neuron.2010.05.025

10.1002/cne.10609

10.1016/j.neuropsychologia.2005.11.001

10.1002/cne.21684

10.1002/hbm.20667

10.1007/BF00523634

10.1038/35077500

10.1046/j.1460-9568.1999.00518.x

10.1523/JNEUROSCI.0178-06.2006

10.1002/cne.903100402

10.1002/(SICI)1096-9861(19960805)371:4<649::AID-CNE12>3.0.CO;2-E

10.1093/cercor/3.4.313

10.1073/pnas.0807304106

10.1038/nn2072

Rizzolatti, 1996, The classic supplementary motor area is formed by two independent areas, Adv Neurol, 70, 45

10.1002/hbm.20348

10.1016/j.neuroimage.2009.06.074

10.1093/cercor/bhm116

10.1093/cercor/bhm241

10.1016/j.neuroimage.2004.03.032

10.1126/science.1063695

10.1152/jn.00343.2003

10.1016/j.neuroimage.2006.05.023

10.1109/42.668698

10.1002/cne.902820308

10.1016/S0730-725X(00)00123-5

10.1523/JNEUROSCI.0991-07.2007

10.1093/cercor/5.1.39

10.1159/000103258

10.1159/000103259

10.1016/j.neuroimage.2009.02.009

10.1016/j.neuron.2007.10.015

10.1136/jamia.2001.0080443

Vogt B Hof P Vogt L (2004) in The human nervous system, Cingulate gyrus, eds Paxinos G Mai J (Elsevier, Amsterdam), pp 915–949.

10.1016/j.jchemneu.2003.09.004

10.1002/cne.20512

10.1002/cne.903590310

10.1016/j.neuroimage.2005.07.048

Von Bonin G (1950) Essay on the cerebral cortex (Charles C Thomas, Springfield, IL).

10.1046/j.1460-9568.1998.00236.x

10.1007/s00221-002-1014-z

10.1073/pnas.0437896100

10.1002/hbm.20267

10.1007/s00429-005-0064-y

10.1148/radiology.214.1.r00ja17217

10.1109/42.906424

Zilles K (2004) Architecture of the human cerebral cortex. Regional and laminar organization. The human nervous system (Elsevier Academic, Amsterdam), pp p:997–1055.

10.1038/nrn2776