Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem

International Journal of Quantum Chemistry - Tập 14 Số 5 - Trang 561-581 - 1978
Rodney J. Bartlett1, George D. Purvis1
1Battelle, Columbus Laboratories, Columbus, Ohio 43201, U.S.A.

Tóm tắt

Abstract

Many‐body (diagrammatic) perturbation theory (MBPT), coupled‐pair many‐electron theory (CPMET), and configuration interaction (CI) are investigated with particular emphasis on the importance of quadruple excitations in correlation theories. These different methods are used to obtain single, double, and quadruple excitation contributions to the correlation energy for a series of molecules including CO2, HCN, N2, CO, BH3, and NH3. It is demonstrated that the sum of double and quadruple excitation diagrams through fourth‐order perturbation theory is usually quite close to the CPMET result for these molecules at equilibrium geometries. The superior reliability of the CPMET model as a function of internuclear separation is illustrated by studying the 1 potential curve of Be2. This molecule violates the assumption common to nondegenerate perturbation theory that only a single reference function is important and this causes improper behavior of the potential curve as a function of R. This is resolved once the quadruple excitation terms are fully included by CPMET.

Từ khóa


Tài liệu tham khảo

10.1103/PhysRev.97.1474

10.1098/rspa.1950.0036

Pauncz R., 1967, Alternant Molecular Orbital Method

10.1063/1.1679283

10.1007/BF02394558

10.1063/1.430638

10.1002/qua.560100802

10.1002/qua.560110112

10.1016/0009-2614(77)80161-9

10.1016/0009-2614(78)80374-1

Kutzelnigg W., 1977, Electronic Structure Theory

10.1007/978-94-010-2156-2_2

10.1002/qua.560080106

Shavitt I., 1977, Int. J. Quant. Chem., Quant. Chem. Symp., 11, 131

10.1002/qua.560120804

10.1016/0009-2614(72)80140-4

Roos B., 1977, Electronic Structure Theory

Shih S.‐K., 1978, Chem. Phys. Lett., 29, 241

Brueckner K. A., Phys. Rev., 97, 1353, 10.1103/PhysRev.97.1353

10.1103/PhysRev.100.36

10.1098/rspa.1957.0037

10.1002/9780470143599.ch4

10.1103/PhysRev.131.684

10.1103/PhysRev.136.B896

10.1002/qua.560080831

10.1063/1.430878

10.1007/978-94-010-1815-9_8

10.1002/qua.560090825

10.1063/1.1732596

10.1002/9780470143520.ch7

10.1002/9780470143551.ch4

10.1103/PhysRev.155.51

10.1103/PhysRev.175.2

10.1016/0029-5582(60)90140-1

10.1016/0029-5582(61)90450-3

10.1063/1.1727484

1969, Adv. Chem. Phys., 14, 35

10.1103/PhysRevA.5.50

10.1016/0009-2614(76)85390-0

10.1002/qua.560030202

Paldus J., 1973, Energy, Structure, and Reactivity

10.1002/qua.560020612

10.1103/PhysRev.46.618

10.1063/1.436023

10.1002/qua.560100617

Hurley A. L., 1976, Electron Correlation in Small Molecules

10.1002/qua.560050402

L. T.Redmon G. D.Purvis andR. J.Bartlett J. Chem. Phys. in press.

10.1103/RevModPhys.39.771

Lindgren L., 1978, Int. J. Quant. Chem., Quant. Chem. Symp., 12, 33

10.1063/1.431600

G. D.PurvisandR. J.Bartlett to be published.

10.1016/0009-2614(78)87046-8

Meyer W., 1971, Int. J. Quant. Chem., Quant. Chem. Symp., 55

10.1063/1.1679283

10.1002/qua.560140505

10.1063/1.433055

Bartlett R. J., 1977, Int. J. Quant. Chem., Quant. Chem. Symp., 11, 165

10.1063/1.1704781

10.1103/PhysRev.139.A357

10.1063/1.1701514

10.1103/PhysRevA.1.552

10.1016/0009-2614(68)80080-6

10.1063/1.1677063

10.1063/1.1680289

10.1002/qua.560050819

10.1063/1.435986

10.1002/qua.560090843

10.1103/PhysRev.101.1233

10.1103/PhysRev.106.1151