Manufacture of Mesoporous Silicon from Living Plants and Agricultural Waste: An Environmentally Friendly and Scalable Process
Tóm tắt
We demonstrate a process for realising mesoporous silicon from a range of land-based plants such as common grasses, bamboos, sugarcane and rice. Such plants act as “natural factories”, converting and concentrating vast quantities of soluble silicon in soil into nanostructured forms of silica in their roots, stems, branches or leaves. This porous biogenic silica is chemically extracted and then thermally reduced to porous silicon using magnesium vapor. Importantly, for larger batch size, an inexpensive thermal moderator such as salt, is added for control of the reaction exotherm and minimization of sintering. Mesoporous silicon of >350 m2/g with 8 nm wide pores has been obtained from a bamboo extract, for example. The same process is applicable to a wide range of “silicon accumulator plants”. The purity of this “naturally derived” porous silicon is likely to be raised to a level acceptable for a wide range of high volume applications outside of electronics and solar cell technology.
Tài liệu tham khảo
Jugdaohsingh R (2007) J Nutr Health Aging 11(2):99–110
Canham LT (1997) Nanotechnology 18:185704
Canham LT (2006) PCT Patent WO 2006/111761. PCT Patent WO 2010/058218
Sailor MJ (2012) Porous silicon in practice. Wiley VCH
Loni A, Barwick D, Batchelor L, Tunbridge J, Han Y, Li ZY, Canham LT (2011) Electrochem Solid-State Lett 14(5):K25–K27
Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) Silicon 1:207–213
Datnoff LE, Synder CH, Korndorfer GH (eds) (2001) Silicon in agriculture. Elsevier
Epstein E (2009) Ann Appl Biol 155:155–160
Banerjee HD, Sen S, Acharya HN (1982) Mater Sci Eng 52:173–179
Sun L, Gong K (2001) Ind Eng Chem Res 40:5861–5877
Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW, Summers CJ, Liu M, Sandhage H (2007) Nature 446. doi:10.1038/nature05570
Zhu J, Wu J, Wang Y, Meng C (2010) J Mater Sci. doi:10.1007/s10853-010-4773-0
Guo M, Zou X, Ren H, Muhammad F, Huang C, Qiu S, Zhu G (2011) Micro Meso Mater 142:194–201
Larbi KK (2010) M. Appl. Sci. Thesis, Univ. Toronto, Canada
Sing KSW, Everett DH, Haul R, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1982) Pure Appl Chem 54(11):2201–2218
Sun Y, Lin L, Deng H, Li J, He B, Sun R, Ouyang P (2008) BioResources 3(2):297–315
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Biotech Fuels 3:10
Canham LT (1995) Adv Mater 7:1033–1037. PCT Patent WO 97/06101, 1999
Hong C, Lee J, Zheng H, Hong SS, Lee C (2011) Nanoscale Res Lett 6:321
Park JH, Gui L, Malzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Nat Mater 8:331–336
Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu XW, Ferrari M (2011) Mol Imaging 10(1):56–58
Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2007) J Pharm Sci 97:632–653
Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Br J Ophthalmol 92(5):705–711
Coffer JL, Whitehead MA, Nagesha DK, Mukherjee P, Akkaraju G, Totolici M, Saffie R, Canham LT (2005) Phys Status Solidi (a) 202(8):1451–1455
Whitehead MA, Fan D, Mukherjee P, Akkaraju GR, Canham LT, Coffer JL (2008) Tissue Eng Part A 14(1):195–206
Fan D, Akkaraju GR, Couch EF, Canham LT, Coffer JL (2010) Nanoscale 3:354–361
Hodson MJ, Evans DE (1995) J Exp Bot 46:161–171
Won CW, Nersisyan HH, Won HI (2011) Sol Energy Mater Sol Cells 95(2):745–750
Li Z, Peng L, He J, Yang Z, Lin Y (2006) J Zhejiang Univ Sci B 7(11):849–857
Holzhuter G, Narayanan K, Gerber T (2003) Anal Bioanal Chem 376:512–517
Matichenkov VV, Calvert DV (2002) J Am Soc Sugarcane Techn 22:21–30
Motomura H, Mita N, Suzuki M (2002) Ann Bot 90:149–152