Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications
Tài liệu tham khảo
Ab Wahab, 2015, A comprehensive review of swarm optimization algorithms, PLoS One, 10
Abedinia, 2014, A new metaheuristic algorithm based on shark smell optimization, Complexity, 21, 97, 10.1002/cplx.21634
Akay, 2012, A modified artificial bee colony algorithm for real-parameter optimization, Inf. Sci, 192, 120, 10.1016/j.ins.2010.07.015
Akay, 2012, Artificial bee colony algorithm for large-scale problems and engineering design optimization, J. Int. Manuf., 23, 1001, 10.1007/s10845-010-0393-4
Alba, 2005, The exploration/exploitation tradeoff in dynamic cellular genetic algorithms, IEEE Trans. Evol. Comput., 9, 126, 10.1109/TEVC.2005.843751
Askarzadeh, 2014, Bird mating optimizer: an optimization algorithm inspired by bird mating strategies, Commun. Nonlinear Sci. Numer. Simul., 19, 1213, 10.1016/j.cnsns.2013.08.027
Askarzadeh, 2016, A novel metaheuristic method for solving constrained ngineering optimization problems: Crow search algorithm, Comput. Struct., 169, 1, 10.1016/j.compstruc.2016.03.001
Bayraktar, 2013, The wind driven optimization technique and its application in electromagnetics, IEEE Trans. Antennas and Propagation, 61, 2745, 10.1109/TAP.2013.2238654
Belegundu, 1982
Beni, 1993, 703
Beyer, 2002, Evolution strategies-A comprehensive introduction, Nat. Comput., 1, 3, 10.1023/A:1015059928466
Birbil, 2003, An electromagnetism-like mechanism for global optimization, J. Glob. Optim., 25, 263, 10.1023/A:1022452626305
Borji, 2007, A new global optimization algorithm inspired by parliamentary political competitions, vol. 4827
Chuang, 2007, Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space–time, 3157
Civicioglu, 2013, Backtracking search optimization algorithm for numerical optimization problems, Appl. Math. Comput., 219, 8121
Coello, 2000, Treating constraints as objectives for single-objective evolutionary optimization, Eng. Opt. A35, 32, 275, 10.1080/03052150008941301
Coello, 2000, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41, 113, 10.1016/S0166-3615(99)00046-9
Coello, 2004, Efficient evolutionary optimization through the use of a cultural algorithm, Eng. Optim., 36, 219, 10.1080/03052150410001647966
Coello, 2002, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inf., 16, 193, 10.1016/S1474-0346(02)00011-3
Cuevas, 2013, A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Syst. Appl., 40, 6374, 10.1016/j.eswa.2013.05.041
De Falco, 2012, Biological invasion–inspired migration in distributed evolutionary algorithms, Inf. Sci., 207, 50, 10.1016/j.ins.2012.04.027
Deb, 1997, Optimizing engineering designs using a combined genetic search, 512
Dewar, 2008, Movements and site fidelity of the giant manta ray, manta birostris, in the komodo marine park, Indonesia, Mar. Biol., 155, 121, 10.1007/s00227-008-0988-x
Digalakis, 2011, On benchmarking functions for genetic algorithms, Int. J. Comput. Math., 77, 481, 10.1080/00207160108805080
Dorigo, 1996, Ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybern. Part B, 26, 29, 10.1109/3477.484436
Dos Santos Coelho, 2010, GaussIan quantum-behaved particle swarm optimization approaches for constrained engineering design problems, Expert Syst. Appl., 37, 1676, 10.1016/j.eswa.2009.06.044
Doğan, 2015, A new metaheuristic for numerical function optimization: Vortex search algorithm, Inf. Sci., 293, 125, 10.1016/j.ins.2014.08.053
Eskandar, 2012, Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems, Comput. Struct., 110, 151, 10.1016/j.compstruc.2012.07.010
Flores, 2011, Gravitational interactions optimization, 226
Gajawada, 2016, Entrepreneur: Artificial human optimization, Trans. Mach. Learn. Artif. Intell., 4, 64
Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 4831, 10.1016/j.cnsns.2012.05.010
Gaurav, 2017, Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Softw., 114, 48, 10.1016/j.advengsoft.2017.05.014
Geem, 2001, A new heuristic optimization algorithm: harmony search, Trans. Simul., 76, 60, 10.1177/003754970107600201
Genç, 2010, Big bang-big crunch optimization algorithm hybridized with local directional moves and application to target motion analysis problem, 881
Gene, 2014
Gupta, 2017, Multi-objective design optimization of rolling bearings using genetic algorithm, Mech. Mach. Theory, 42, 1418, 10.1016/j.mechmachtheory.2006.10.002
Hare, 2013, A survey of non-gradient optimization methods in structural engineering, Adv. Eng. Softw., 59, 19, 10.1016/j.advengsoft.2013.03.001
He, 2004, An improved particle swarm optimizer for mechanical design optimization problems, Eng. Opt., 36, 585, 10.1080/03052150410001704854
He, 2006, An effective co-evolutionary particle swarm optimization for engineering optimization problems, Eng. Appl. Artif. Intell., 20, 89, 10.1016/j.engappai.2006.03.003
He, 2007, A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization, Appl. Math. Comput., 186, 1407
Holland, 1975
Huan, 2016, Ideology algorithm: a socio-inspired optimization methodology, Neural Comput. Appl., 1
Huang, 2007, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput., 186, 340
Javidy, 2015, Ions motion algorithm for solving optimization problems, Appl. Soft Comput., 32, 72, 10.1016/j.asoc.2015.03.035
Johnna, 2016
Juste, 1999, An evolutionary programming solution to the unit commitment problem, IEEE Trans. Power Syst., 14, 1452, 10.1109/59.801925
Kannan, 1994, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, J. Mech. Des., 116, 405, 10.1115/1.2919393
Karaboga, 2009, A comparative study of artificial bee colony algorithm, Appl. Math. Comput., 214, 108
Kashan, 2009, League championship algorithm: a new algorithm for numerical function optimization, 43
Kaur, 2013, Human opinion dynamics: an inspiration to solve complex optimization problems, Sci. Rep., 3
Kaveh, 2016, Water evaporation optimization: a novel physically inspired optimization algorithm, Comput. Struct., 167, 69, 10.1016/j.compstruc.2016.01.008
Kaveh, 2017, A novel meta-heuristic optimization algorithm: Thermal exchange optimization, Adv. Eng. Softw., 110, 69, 10.1016/j.advengsoft.2017.03.014
Kaveh, 2013, A new optimization method: dolphin echolocation, Adv. Eng. Softw., 59, 53, 10.1016/j.advengsoft.2013.03.004
Kaveh, 2010, A novel heuristic optimization method: charged system search, Acta Mech., 213, 267, 10.1007/s00707-009-0270-4
Kennedy, 1995, Particle swarm optimization, 2
Kiran, 2015, TSA: Tree-seed algorithm for continuous optimization, Expert Syst. Appl., 42, 6686, 10.1016/j.eswa.2015.04.055
Kirkpatrick, 1983, Optimization by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671
Krause, 2013, A survey of swarm algorithms applied to discrete optimization problems, 169
Krihnanand, 2009, Glowworm swarm optimization for simultaneous Capture of multiple local optima of multimodal functions, J. Swarm Intell., 2, 87, 10.1007/s11721-008-0021-5
Kripka, 2008, Big crunch optimization method, 1
Kumar, 2018, Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology, Future Gener. Comput. Syst., 81, 252, 10.1016/j.future.2017.10.052
Kuo, 2013, Cultural evolution algorithm for global optimizations and its applications, J. Appl. Res. Technol., 11, 510, 10.1016/S1665-6423(13)71558-X
Liang, 2013, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization
Liu, 2010, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10, 629, 10.1016/j.asoc.2009.08.031
Liu, 2005, Improved particle swarm optimization combined with chaos, Chaos Solitons Fractals, 25, 1261, 10.1016/j.chaos.2004.11.095
Lynn, 2015, Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation, Swarm Evol. Comput., 24, 11, 10.1016/j.swevo.2015.05.002
Mehrabian, 2006, A novel numerical optimization algorithm inspired from weed colonization, Ecol. Inf., 1, 355, 10.1016/j.ecoinf.2006.07.003
Meng, 2016, Monkey king evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowl.-Based Syst., 97, 144, 10.1016/j.knosys.2016.01.009
Mezura-Montes, 2005, Useful infeasible solutions in engineering optimization with evolutionary algorithms, 652
Miller, 2016
Mirjalili, 2016, SCA: a sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96, 120, 10.1016/j.knosys.2015.12.022
Mirjalili, 2012, BMOA: binary magnetic optimization algorithm, Int. J. Mach. Learn. Comput., 2, 204, 10.7763/IJMLC.2012.V2.114
Mirjalili, 2016, The whale optimization algorithm, Adv. Eng. Softw., 95, 51, 10.1016/j.advengsoft.2016.01.008
Mirjalili, 2014, Grey wolf optimizer, Adv. Eng. Softw., 69, 46, 10.1016/j.advengsoft.2013.12.007
Moghaddam, 2012
Mohamed, 2017, Optimal power flow using moth swarm algorithm, Electr. Power Syst. Res., 142190
Montes, 2016, Increasing successful offspring and diversity in differential evolution for engineering design, 131
Moosavian, 2014, Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks, Swarm Evol. Comput., 17, 14, 10.1016/j.swevo.2014.02.002
Moscato, 2007, Benchmarking a memetic algorithm for ordering microarray data, Biosystems, 88, 56, 10.1016/j.biosystems.2006.04.005
Mucherino, 2007, Monkey search: a novel metaheuristic search for global optimization, 162
Mühlenbein, 1988, Evolution algorithms in combinatorial optimization, Parallel Comput., 7, 65, 10.1016/0167-8191(88)90098-1
Ngo, 2016, A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems, J. Comput. Sci., 13, 68, 10.1016/j.jocs.2016.01.004
Oftadeh, 2010, A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search, Comput. Math. Appl., 60, 2087, 10.1016/j.camwa.2010.07.049
Osyczka, 2002
Pan, 2012, A new fruit fly optimization algorithm: taking the financial distress model as an example, Knowl.-Based Syst., 266, 9
Parsopoulos, 2005, Unified particle swarm optimization for solving constrained engineering optimization problems, 582
Passino, 2002, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst., 22, 52, 10.1109/MCS.2002.1004010
Patel, 2015, Heat transfer search (HTS): a novel optimization algorithm, Inf. Sci., 324, 217, 10.1016/j.ins.2015.06.044
Punnathanam, 2016, Yin-yang-pair optimization: A novel lightweight optimization algorithm, Eng. Appl. Artif. Intell., 546, 2
Rao, 2011, Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43, 303, 10.1016/j.cad.2010.12.015
Rao, 2012, Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems, Inf. Sci., 183, 1, 10.1016/j.ins.2011.08.006
Rao, 2007, Optimum design of rolling element bearings using genetic algorithms, Mech. Mach. Theory, 42, 233, 10.1016/j.mechmachtheory.2006.02.004
Rashedi, 2009, GSA: a gravitational search algorithm, Inf. Sci., 179, 2232, 10.1016/j.ins.2009.03.004
Ray, 2003, Society and civilization: An optimization algorithm based on the simulation of social behavior, IEEE Trans. Evol. Comput., 7, 386, 10.1109/TEVC.2003.814902
Rebecca, 2015
Rocca, 2011, Differential evolution as applied to electromagnetics, IEEE Antennas Propag. Mag., 53, 38, 10.1109/MAP.2011.5773566
Sacco, 2005, A new stochastic optimization algorithm based on a particle collision metaheuristic
Sadollah, 2013, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13, 2592, 10.1016/j.asoc.2012.11.026
Saremi, 2017, Grasshopper optimisation algorithm: Theory and application, Adv. Eng. Softw., 105, 30, 10.1016/j.advengsoft.2017.01.004
Satapathy, 2016, Social group optimization (SGO): a new population evolutionary optimization technique, Complex Intel. Syst., 2, 173, 10.1007/s40747-016-0022-8
Shah-Hosseini, 2009, The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm, Int. J. Bio-Inspired Comput., 1, 71, 10.1504/IJBIC.2009.022775
Shah-Hosseini, 2011, Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimization, Int. J. Comput. Sci. Eng., 6, 132
Shen, 2009, Light ray optimization and its parameter analysis, 918
Siddall, 1982
Simon, 2009, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12, 702, 10.1109/TEVC.2008.919004
Tamura, 2011, Primary study of spiral dynamics inspired optimization, IEEE Trans. Electr. Electron. Eng., 6, S98, 10.1002/tee.20628
Uymaz, 2015, Artificial algae algorithm (AAA) for nonlinear global optimization, Appl. Soft Comput., 31, 153, 10.1016/j.asoc.2015.03.003
Wang, 2009, Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint handling technique, Struct. Multidiscipl. Optim., 37, 395, 10.1007/s00158-008-0238-3
Wang, 2010, An effective differential evolution with level comparison for constrained engineering design, Struct. Multidiscipl. Optim., 41, 947, 10.1007/s00158-009-0454-5
Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893
Xu, 2010, Social emotional optimization algorithm for nonlinear constrained optimization problems, vol. 6466, 583
Yang, 2010, Firefly algorithm, stochastic test functions and design optimization, Int. J. Bio-Inspired Comput., 2, 78, 10.1504/IJBIC.2010.032124
Yang, 2009, Cuckoo search via Lévy flights, 210
Yang, 2012, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 29, 464, 10.1108/02644401211235834
Zarand, 2002, Using hysteresis for optimization, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.150201
Zhang, 2008, Differential evolution with dynamic stochastic selection for constrained optimization, Inf. Sci., 1783043
Zhao, 2016, An effective bacterial foraging optimizer for global optimization, Inf. Sci., 329, 719, 10.1016/j.ins.2015.10.001
Zhao, 2019, A novel atom search optimization for dispersion coefficient estimation in groundwater, Future Gener. Comput. Syst., 91, 601, 10.1016/j.future.2018.05.037
Zhao, 2019, Neural Comput. Appl.
Zhao, 2019, Supply–demand-based optimization: a novel economics-inspired algorithm for global optimization, IEEE Access, 7, 73182, 10.1109/ACCESS.2019.2918753
Zheng, 2015, Water wave optimization: a new nature-inspired metaheuristic, Comput. Oper. Res., 55, 1, 10.1016/j.cor.2014.10.008
Zheng, 2010, Gravitation field algorithm and its application in gene cluster, Algorithms Mol. Biol., 5, 32, 10.1186/1748-7188-5-32