Manipulation of nanoparticles in supersonic beams for the production of nanostructured materials

P. Piseri1,2, H. Vahedi Tafreshi3, P. Milani1,2
1INFM-Dipartimento di Fisica, Universita’ di Milano, Via Celoria 16, I-20133 Milano, Italy
2NCRC, North Carolina State University, 2401 Research Dr., Raleigh, NC 27695-8301, USA
3Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, Universita’ di Milano, Via Celoria 16, 20133 Milano, Italy

Tài liệu tham khảo

Siegel RW, Hu E, Roco MC, editors. Nanostructure science and technology: a worldwide study. National Science and Technology Council (NSTC), Loyola College, Maryland, 1999. Available from: http://itri.loyola.edu/nano/final/ Wegner, 2003, Scale-up of nanoparticle synthesis in diffusion flame reactors, Chem. Eng. Sci., 58, 4581, 10.1016/j.ces.2003.07.010 Kammler, 2001, Flame synthesis of nanoparticles, Chem. Eng. Technol., 24, 583, 10.1002/1521-4125(200106)24:6<583::AID-CEAT583>3.0.CO;2-H Singh, 2002, Approaches to increasing yield in evaporation/condensation nanoparticle generation, J. Aerosol Sci., 33, 1309, 10.1016/S0021-8502(02)00072-1 Wegner, 2002, Flame-nozzle synthesis of nanoparticles with closely controlled size, morphology and crystallinity, Mater. Lett., 55, 318, 10.1016/S0167-577X(02)00385-3 Wegner, 2003, Nozzle-quenching process for controlled flame synthesis of titania nanoparticles, AIChE J., 49, 1667, 10.1002/aic.690490707 Nakaso, 2002, Evaluation of the change in the morphology of gold nanoparticles during sintering, J. Aerosol Sci., 33, 1061, 10.1016/S0021-8502(02)00058-7 Nanda, 2002, Band-gap tuning of PbS nanoparticles by in-flight sintering of size classified aerosols, J. Appl. Phys., 91, 2315, 10.1063/1.1431429 Magnusson MH, Deppert K, Malm J-O, Samuelson L. Size- and composition controlled Au–In nanoalloy aerosol particles. In: Proceedings of 7th International Conference on Nanometer-Scale Science and Technology and 21st European Conference on Surface Science (NANO-7/ECOSS-21), 2002 Ostraat, 2001, Ultraclean two-stage aerosol reactor for production of oxide-passivated silicon nanoparticles for novel memory devices, J. Electochem. Soc., 148, 265, 10.1149/1.1360210 Krinke, 2002, Nanostructured deposition of nanoparticles from the gas phase, Part Part Syst. Char., 19, 321, 10.1002/1521-4117(200211)19:5<321::AID-PPSC321>3.0.CO;2-I Krinke, 2001, Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase, Appl. Phys. Lett., 78, 3708, 10.1063/1.1377625 Di Fonzo, 2000, Focused nanoparticle-beam of patterned microstructures, Appl. Phys. Lett., 77, 910, 10.1063/1.1306638 Heberlein, 2001, Thermal plasma deposition of nanophase hard coatings, Surf. Coat. Tech., 142, 265, 10.1016/S0257-8972(01)01138-0 Milani, 2001, Cluster beam synthesis of nanostructured materials, J. Vac. Sci. Tech. A, 19, 2025, 10.1116/1.1331289 Oxford Report #36 UKAEA, Harwell, BR 694, 1946, p. 2 Becker, 1954, Z. Naturforsch., 9a, 975, 10.1515/zna-1954-1113 Becker, 1979, vol. 35, 245 Reis, 1963, Separation of gas mixtures in supersonic jets, J. Chem. Phys., 39, 3240, 10.1063/1.1734185 Ude, 2003, Hypersonic impaction with molecular mass standards, Aerosol Sci., 34, 1245, 10.1016/S0021-8502(03)00100-9 Waterman, 1959, Separation of gas mixtures in a supersonic jet, J. Chem. Phys., 31, 405, 10.1063/1.1730367 Murphy, 1964, Production of particulate beams, J. Appl. Phys., 85, 1986, 10.1063/1.1713788 Israel, 1967, High-speed beams of small particles, J. Coll. Interface Sci., 24, 330, 10.1016/0021-9797(67)90258-5 Dahneke, 1972, An aerosol beam spectrometer, J. Aerosol Sci., 3, 345, 10.1016/0021-8502(72)90089-4 Liu, 1995, Generating particle beam of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansion, Aerosol Sci. Tech., 22, 293, 10.1080/02786829408959748 Liu, 1995, Generating particle beam of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions, Aerosol Sci. Tech., 22, 314, 10.1080/02786829408959749 Fernandez de la Mora, 1988, Aerodynamic focusing of particles in a carrier gas, J. Fluid Mech., 195, 1, 10.1017/S0022112088002307 Fernandez de la Mora, 1989, Aerodynamic focusing of heavy molecules in seeded supersonic jets, J. Chem. Phys., 91, 2603, 10.1063/1.456969 Fuerstenau, 1994, Visualization of aerodynamically focused subsonic aerosol jet, J. Aerosol Sci., 25, 165, 10.1016/0021-8502(94)90188-0 Mallina, 1999, High-speed particle beam generation: simple focusing mechanisms, J. Aerosol Sci., 30, 719, 10.1016/S0021-8502(98)00759-9 Goo, 2002, Numerical simulation of aerosol concentration at atmospheric pressure by a cascade of aerodynamic slit lenses, J. Aerosol Sci., 33, 1493, 10.1016/S0021-8502(02)00109-X Lee, 2003, Inertial focusing of particles with an aerodynamic lens in the atmospheric pressure range, J. Aerosol Sci., 34, 211, 10.1016/S0021-8502(02)00158-1 Zhang, 2002, A numerical characterization of particle beam collimation by an aerodynamic lens-nozzle system: Part I. An individual lens or nozzle, Aerosol Sci. Tech., 36, 617, 10.1080/02786820252883856 Piseri, 2001, Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions, Rev. Sci. Instrum., 72, 2261, 10.1063/1.1361082 Vahedi Tafreshi, 2001, Aerodynamic focusing of clusters into a high intensity and low divergence supersonic beam, Eur. Phys. J. Appl. Phys., 16, 149, 10.1051/epjap:2001204 Vahedi Tafreshi, 2002, A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusing, Aerosol Sci. Tech., 36, 593, 10.1080/02786820252883838 Vahedi Tafreshi, 2002, Simulation on the effect of Brownian motion on nanoparticle trajectories in a pulsed micro-plasma cluster source, J. Nanopart. Res., 4, 511, 10.1023/A:1022845401781 Middha, 2003, Particle focusing characteristics of sonic jets, Aerosol Sci. Tech., 37, 907, 10.1080/02786820300934 Schreiner, 1998, Aerodynamic lens system for producing particle beams at stratospheric pressures, Aerosol Sci. Tech., 29, 50, 10.1080/02786829808965550 Mallina, 2000, High speed particle beam generation: a dynamic focusing mechanism for selecting ultra-fine particles, Aerosol Sci. Tech., 33, 87, 10.1080/027868200410868 Fernandez de la Mora, 1996, Drastic improvement of the resolution of aerosol size spectrometers via aerodynamic focusing: the case of variable-pressure impactors, Chem. Eng. Comm., 151, 101, 10.1080/00986449608936544 Fuchs, 1989, Cluster-beam deposition for high-quality thin films, Phys. Rev. A, 40, 6128, 10.1103/PhysRevA.40.6128 Perez, 1997, Cluster assembled materials: a novel class of nanostructured solids with original structures and properties, J. Phys. D: Appl. Phys., 30, 709, 10.1088/0022-3727/30/5/003 Yamada, 1995, A short review of ionized cluster beam technology, Nucl. Instrum. Meth. Fis. Res. B, 99, 240, 10.1016/0168-583X(94)00562-1 Paillard, 1993, Diamond like carbon films obtained by low energy cluster beam deposition: Evidence of a memory effect of the properties of free carbon clusters, Phys. Rev. Lett., 71, 4170, 10.1103/PhysRevLett.71.4170 Barborini, 1999, Synthesis of carbon films with controlled nanostructure by separation of neutral clusters in supersonic beams, Chem. Phys. Lett., 300, 633, 10.1016/S0009-2614(98)01449-3 Lenardi, 2002, NEXAFS spectroscopy for the investigation of hydrogen absorption properties of nanostructured carbon thin films, 327 Ehbrecht, 1997, Generation, analysis, and deposition of silicon nanocrystals up to 10 nm in diameter, Z. Phys. D, 40, 88, 10.1007/s004600050165 Barborini, 2003, Supersonic cluster beam deposition of nanostructured titania, Eur. Phys. J. D, 24, 277, 10.1140/epjd/e2003-00189-2 Donadio, 1999, Growth of nanostructured carbon films by cluster assembly, Phys. Rev. Lett., 83, 776, 10.1103/PhysRevLett.83.776 Milani, 1999 Binns, 2001, Nanoclusters deposited on surfaces, Surf. Sci. Rep., 44, 1, 10.1016/S0167-5729(01)00015-2 Fernandez de la Mora, 1998, Differential mobility analysis of molecular ions and nanometer particles, TrAC-Trend Anal. Chem., 17, 328, 10.1016/S0165-9936(98)00039-9 Roux, 1994, Mass selection of neutral clusters in low-energy cluster beam deposition experiments: is it realistic, Appl. Phys. Lett., 64, 1212, 10.1063/1.110892 Ehbrecht, 1997, Photoluminescence and resonant Raman spectra of silicon films produced by size-selected cluster beam deposition, Phys. Rev. B, 56, 6958, 10.1103/PhysRevB.56.6958 Huisken, 1999, Structured films of light-emitting silicon nanoparticles produced by cluster beam deposition, Appl. Phys. Lett., 74, 3776, 10.1063/1.124176 Huisken, 2002, Light-emitting silicon nanocrystals from laser pyrolysis, Adv. Mater., 14, 1861, 10.1002/adma.200290021 Barborini, 2002, Engineering the nanocrystalline structure of TiO2 films by aerodynamically filtered cluster deposition, Appl. Phys. Lett., 81, 3052, 10.1063/1.1510579 Kholmanov, 2003, The influence of the precursor clusters on the structural and morphological evolution of nanostructured TiO2 under thermal annealing, Nanotechnology, 14, 1168, 10.1088/0957-4484/14/11/002 Piseri P. Supersonic cluster beam deposition for the synthesis of nanophase materials. PhD thesis, Università degli Studi di Milano, Milano, 2000 Lenardi, 2001, NEXAFS characterization of nanostructured carbon thin films exposed to hydrogen, Diam. Relat. Mater., 10, 1195, 10.1016/S0925-9635(00)00426-X Ducati, 2002, Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films, J. Appl. Phys., 92, 5482, 10.1063/1.1512969 Bruzzi, 2001, Electrical conduction in nanostructured carbon films produced by supersonic cluster beam deposition, Diam. Relat. Mater., 10, 989, 10.1016/S0925-9635(00)00611-7 Milani, 2001, Cluster assembling of nanostructured carbon films, Diam. Relat. Mater., 10, 240, 10.1016/S0925-9635(00)00474-X Casari, 2001, Acoustic phonon propagation and elastic properties of cluster assembled carbon films investigated by Brillouin light scattering, Phys. Rev. B, 64, #085417, 10.1103/PhysRevB.64.085417 Barborini, 2000, Cluster beam microfabrication of patterns of three-dimensional nanostructured objects, Appl. Phys. Lett., 77, 1059, 10.1063/1.1289040