Manipulating non-collinear antiferromagnetic order and thermal expansion behaviors in triangular lattice Mn3Ag1−Sn(Ge) N
Journal of Materiomics - 2023
Tài liệu tham khảo
Jungfleisch, 2018, Perspectives of antiferromagnetic spintronics, Phys Lett A, 382, 865, 10.1016/j.physleta.2018.01.008
Baltz, 2018, Antiferromagnetic spintronics, Rev Mod Phys, 90, 10.1103/RevModPhys.90.015005
Železný, 2017, Spin-polarized current in noncollinear antiferromagnets, Phys Rev Lett, 119, 10.1103/PhysRevLett.119.187204
Nayak, 2016, Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Sci Adv, 2, 10.1126/sciadv.1501870
You, 2019, Anomalous Hall effect–like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films, Adv Electron Mater, 5, 10.1002/aelm.201800818
Nakatsuji, 2015, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature, 527, 212, 10.1038/nature15723
Iwaki, 2020, Large anomalous Hall effect in L12-ordered antiferromagnetic Mn3Ir thin films, Appl Phys Lett, 116, 10.1063/1.5128241
Liu, 2018, Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature, Nat Electron, 1, 172, 10.1038/s41928-018-0040-1
Huyen, 2019, Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A = Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt), Phys Rev B, 100, 10.1103/PhysRevB.100.094426
Nan, 2020, Controlling spin current polarization through non-collinear antiferromagnetism, Nat Commun, 11, 4671, 10.1038/s41467-020-17999-4
Hajiri, 2019, Electrical current switching of the noncollinear antiferromagnet Mn3GaN, Appl Phys Lett, 115, 10.1063/1.5109317
Samathrakis, 2020, Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn3GaN, Phys Rev B, 101, 10.1103/PhysRevB.101.214423
You, 2021, Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet, Nat Commun, 12, 6524, 10.1038/s41467-021-26893-6
Liu, 2012, Spin-torque switching with the giant spin Hall effect of tantalum, Science, 336, 555, 10.1126/science.1218197
Zhou, 2019, Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X = Ga, Zn, Ag, or Ni, Phys Rev B, 99, 10.1103/PhysRevB.99.104428
Gurung, 2019, Anomalous Hall conductivity of noncollinear magnetic antiperovskites, Phys Rev Mater, 3
Boldrin, 2019, Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films, Phys Rev Mater, 3
Boldrin, 2019, The biaxial strain dependence of magnetic order in spin frustrated Mn3NiN thin films, Adv Funct Mater, 29, 10.1002/adfm.201902502
Zhao, 2019, Anomalous Hall effect in the noncollinear antiferromagnetic antiperovskite Mn3Ni1−xCuxN, Phys Rev B, 100, 10.1103/PhysRevB.100.045109
Kamishima, 2020, Giant magnetoresistance in the intermetallic compound Mn3GaC, Phys Rev B, 63, 10.1103/PhysRevB.63.024426
Kim, 2001, Close correlation among lattice, spin, and charge in the manganese-based antiperovskite material, Solid State Commun, 119, 507, 10.1016/S0038-1098(01)00279-4
Deng, 2015, Invar-like behavior of antiperovskite Mn3+xNi1–xN compounds, Chem Mater, 27, 2495, 10.1021/cm504702m
Song, 2011, Adjustable zero thermal expansion in antiperovskite manganese nitride, Adv Mater, 23, 4690, 10.1002/adma.201102552
Takenaka, 2005, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl Phys Lett, 87, 10.1063/1.2147726
Wang, 2012, Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn,M)x N(M = Ag, Ge), Phys Rev B, 85, 10.1103/PhysRevB.85.220103
Deng, 2016, Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn3+xNi1−xN, Appl Phys Lett, 108, 10.1063/1.4940912
Ding, 2011, Near zero temperature coefficient of resistivity in antiperovskite Mn3Ni1−xCuxN, Appl Phys Lett, 99, 10.1063/1.3671183
Sun, 2010, Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound, Scripta Mater, 62, 686, 10.1016/j.scriptamat.2010.01.027
Takenaka, 2011, Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1−xCuxN, Appl Phys Lett, 98, 10.1063/1.3541449
Turchenko, 2019, Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties, J Magn Magn Mater, 477, 9, 10.1016/j.jmmm.2018.12.101
Zdorovets, 2021, Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application, J Mater Sci Mater Electron, 32, 16694, 10.1007/s10854-021-06226-5
Fruchart, 1978, Magnetic studies of the metallic perovskite-type compounds of manganese, J Phys Soc Jpn, 44, 781, 10.1143/JPSJ.44.781
Chu, 2012, Magnetic transition, lattice variation and electronic transport properties of Ag-doped Mn3Ni1−xAgxN antiperovskite compounds, Scripta Mater, 67, 173, 10.1016/j.scriptamat.2012.04.008
Kadowaki, 2021, Structural phase transition and giant negative thermal expansion in pyrophosphate Zn2–xMgxP2O7, Appl Phys Lett, 119, 10.1063/5.0073761
Sun, 2010, Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1−xSnxN compounds, J Am Ceram Soc, 93, 2178, 10.1111/j.1551-2916.2010.03711.x
Kodama, 2010, Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1−xGexN (x∼0.5), Phys Rev B, 81, 10.1103/PhysRevB.81.224419
Takenaka, 2008, Negative thermal expansion in Ge-free antiperovskite manganese nitrides: tin-doping effect, Appl Phys Lett, 92, 10.1063/1.2831715
Tong, 2013, Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3, Appl Phys Lett, 102, 10.1063/1.4790151
Mochizuki, 2018, Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets, Phys Rev B, 97, 10.1103/PhysRevB.97.060401
Iikubo, 2008, Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN, Phys Rev Lett, 101, 10.1103/PhysRevLett.101.205901
Rodríguez-Carvajal, 1993, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B, 192, 55, 10.1016/0921-4526(93)90108-I
Denton, 1991, Vegard’s law, Phys Rev A, 43, 3161, 10.1103/PhysRevA.43.3161
Shaked, 1988, Low-temperature magnetic structure of MnO: a high-resolution neutron-diffraction study, Phys Rev B Condens Matter, 38, 11901, 10.1103/PhysRevB.38.11901
Dai, 2015, Effect of Si doping on structure, thermal expansion and magnetism of antiperovskite manganese nitrides Mn3Cu1−xSixN, Mater Lett, 139, 409, 10.1016/j.matlet.2014.10.136
Lin, 2013, Effects of carbon content on structural, magnetic, and electrical/thermal transport properties of antiperovskite compounds GaCxFe3, J Appl Phys, 113, 10.1063/1.4795139
Xie, 2023, The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate, J Mater Sci Technol, 146, 80, 10.1016/j.jmst.2022.10.054