Manipulating non-collinear antiferromagnetic order and thermal expansion behaviors in triangular lattice Mn3Ag1−Sn(Ge) N

Dongmei Hu1, Sihao Deng2,3, Ying Sun1, Kewen Shi4, Xiuliang Yuan1, Shihai An1, Lunhua He2,5,6, Jie Chen2,3, Yuanhua Xia7, Cong Wang1,4
1School of Physics, Beihang University, Beijing, 100191, China
2Spallation Neutron Source Science Center, Dongguan 523803, China
3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
4School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
5Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
6Songshan Lake Materials Laboratory, Dongguan 523808, China
7Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China

Tài liệu tham khảo

Jungfleisch, 2018, Perspectives of antiferromagnetic spintronics, Phys Lett A, 382, 865, 10.1016/j.physleta.2018.01.008 Baltz, 2018, Antiferromagnetic spintronics, Rev Mod Phys, 90, 10.1103/RevModPhys.90.015005 Železný, 2017, Spin-polarized current in noncollinear antiferromagnets, Phys Rev Lett, 119, 10.1103/PhysRevLett.119.187204 Nayak, 2016, Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Sci Adv, 2, 10.1126/sciadv.1501870 You, 2019, Anomalous Hall effect–like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films, Adv Electron Mater, 5, 10.1002/aelm.201800818 Nakatsuji, 2015, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature, 527, 212, 10.1038/nature15723 Iwaki, 2020, Large anomalous Hall effect in L12-ordered antiferromagnetic Mn3Ir thin films, Appl Phys Lett, 116, 10.1063/1.5128241 Liu, 2018, Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature, Nat Electron, 1, 172, 10.1038/s41928-018-0040-1 Huyen, 2019, Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A = Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt), Phys Rev B, 100, 10.1103/PhysRevB.100.094426 Nan, 2020, Controlling spin current polarization through non-collinear antiferromagnetism, Nat Commun, 11, 4671, 10.1038/s41467-020-17999-4 Hajiri, 2019, Electrical current switching of the noncollinear antiferromagnet Mn3GaN, Appl Phys Lett, 115, 10.1063/1.5109317 Samathrakis, 2020, Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn3GaN, Phys Rev B, 101, 10.1103/PhysRevB.101.214423 You, 2021, Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet, Nat Commun, 12, 6524, 10.1038/s41467-021-26893-6 Liu, 2012, Spin-torque switching with the giant spin Hall effect of tantalum, Science, 336, 555, 10.1126/science.1218197 Zhou, 2019, Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X = Ga, Zn, Ag, or Ni, Phys Rev B, 99, 10.1103/PhysRevB.99.104428 Gurung, 2019, Anomalous Hall conductivity of noncollinear magnetic antiperovskites, Phys Rev Mater, 3 Boldrin, 2019, Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films, Phys Rev Mater, 3 Boldrin, 2019, The biaxial strain dependence of magnetic order in spin frustrated Mn3NiN thin films, Adv Funct Mater, 29, 10.1002/adfm.201902502 Zhao, 2019, Anomalous Hall effect in the noncollinear antiferromagnetic antiperovskite Mn3Ni1−xCuxN, Phys Rev B, 100, 10.1103/PhysRevB.100.045109 Kamishima, 2020, Giant magnetoresistance in the intermetallic compound Mn3GaC, Phys Rev B, 63, 10.1103/PhysRevB.63.024426 Kim, 2001, Close correlation among lattice, spin, and charge in the manganese-based antiperovskite material, Solid State Commun, 119, 507, 10.1016/S0038-1098(01)00279-4 Deng, 2015, Invar-like behavior of antiperovskite Mn3+xNi1–xN compounds, Chem Mater, 27, 2495, 10.1021/cm504702m Song, 2011, Adjustable zero thermal expansion in antiperovskite manganese nitride, Adv Mater, 23, 4690, 10.1002/adma.201102552 Takenaka, 2005, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl Phys Lett, 87, 10.1063/1.2147726 Wang, 2012, Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn,M)x N(M = Ag, Ge), Phys Rev B, 85, 10.1103/PhysRevB.85.220103 Deng, 2016, Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn3+xNi1−xN, Appl Phys Lett, 108, 10.1063/1.4940912 Ding, 2011, Near zero temperature coefficient of resistivity in antiperovskite Mn3Ni1−xCuxN, Appl Phys Lett, 99, 10.1063/1.3671183 Sun, 2010, Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound, Scripta Mater, 62, 686, 10.1016/j.scriptamat.2010.01.027 Takenaka, 2011, Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1−xCuxN, Appl Phys Lett, 98, 10.1063/1.3541449 Turchenko, 2019, Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties, J Magn Magn Mater, 477, 9, 10.1016/j.jmmm.2018.12.101 Zdorovets, 2021, Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application, J Mater Sci Mater Electron, 32, 16694, 10.1007/s10854-021-06226-5 Fruchart, 1978, Magnetic studies of the metallic perovskite-type compounds of manganese, J Phys Soc Jpn, 44, 781, 10.1143/JPSJ.44.781 Chu, 2012, Magnetic transition, lattice variation and electronic transport properties of Ag-doped Mn3Ni1−xAgxN antiperovskite compounds, Scripta Mater, 67, 173, 10.1016/j.scriptamat.2012.04.008 Kadowaki, 2021, Structural phase transition and giant negative thermal expansion in pyrophosphate Zn2–xMgxP2O7, Appl Phys Lett, 119, 10.1063/5.0073761 Sun, 2010, Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1−xSnxN compounds, J Am Ceram Soc, 93, 2178, 10.1111/j.1551-2916.2010.03711.x Kodama, 2010, Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1−xGexN (x∼0.5), Phys Rev B, 81, 10.1103/PhysRevB.81.224419 Takenaka, 2008, Negative thermal expansion in Ge-free antiperovskite manganese nitrides: tin-doping effect, Appl Phys Lett, 92, 10.1063/1.2831715 Tong, 2013, Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3, Appl Phys Lett, 102, 10.1063/1.4790151 Mochizuki, 2018, Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets, Phys Rev B, 97, 10.1103/PhysRevB.97.060401 Iikubo, 2008, Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN, Phys Rev Lett, 101, 10.1103/PhysRevLett.101.205901 Rodríguez-Carvajal, 1993, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B, 192, 55, 10.1016/0921-4526(93)90108-I Denton, 1991, Vegard’s law, Phys Rev A, 43, 3161, 10.1103/PhysRevA.43.3161 Shaked, 1988, Low-temperature magnetic structure of MnO: a high-resolution neutron-diffraction study, Phys Rev B Condens Matter, 38, 11901, 10.1103/PhysRevB.38.11901 Dai, 2015, Effect of Si doping on structure, thermal expansion and magnetism of antiperovskite manganese nitrides Mn3Cu1−xSixN, Mater Lett, 139, 409, 10.1016/j.matlet.2014.10.136 Lin, 2013, Effects of carbon content on structural, magnetic, and electrical/thermal transport properties of antiperovskite compounds GaCxFe3, J Appl Phys, 113, 10.1063/1.4795139 Xie, 2023, The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate, J Mater Sci Technol, 146, 80, 10.1016/j.jmst.2022.10.054