Manipulating Lewis acid–base interactions in metal-organic frameworks for optimizing zinc-ion diffusion, deposition, and reaction behaviors

Materials Today Chemistry - Tập 32 - Trang 101629 - 2023
D. Li1, Y. Ouyang1, H. Lu1, Y. Xie1, S. Guo1, Q. Zeng1, Y. Xiao1, Q. Zhang1, S. Huang1
1Guangzhou Key Laboratory of Low-dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China

Tài liệu tham khảo

Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644 Zhao, 2023, Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries, Adv. Mater., 35 Wu, 2019, Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries, Mater. Today Nano, 6 Zhang, 2020, Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion Storage, Small Methods, 4, 10.1002/smtd.201900828 Yang, 2023, Protocol in evaluating capacity of Zn–Mn aqueous batteries: a clue of pH, Adv. Mater. Du, 2020, Tunable layered (Na,Mn)V8O20·nH2O cathode material for high-performance aqueous zinc ion batteries, Adv. Sci., 7, 10.1002/advs.202000083 Han, 2021, Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage, Carbon, 184, 534, 10.1016/j.carbon.2021.08.060 Yang, 2023, Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries, Natl. Sci. Rev., 10, nwac268, 10.1093/nsr/nwac268 Hu, 2021, The rising zinc anodes for high-energy aqueous batteries, EnergyChem, 3, 10.1016/j.enchem.2021.100052 Li, 2020, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries, Energy Environ. Mater., 3, 146, 10.1002/eem2.12067 Zhang, 2023, Dynamically interfacial pH-buffering effect enabled by N-methylimidazole molecules as spontaneous proton pumps toward highly reversible zinc metal anodes, Adv. Mater. Yang, 2022, Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries, Angew. Chem. Int. Ed., 61 Blanc, 2020, Scientific challenges for the implementation of Zn-ion batteries, Joule, 4, 771, 10.1016/j.joule.2020.03.002 Zheng, 2019, Reversible epitaxial electrodeposition of metals in battery anodes, Science, 366, 645, 10.1126/science.aax6873 Du, 2020, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries, Energy Environ. Sci., 13, 3330, 10.1039/D0EE02079F Guo, 2022, A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6, 10.1002/smtd.202200597 Li, 2020, Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes, Adv. Mater., 32 Fang, 2022, Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries, Adv. Funct. Mater., 32, 10.1002/adfm.202109671 Wang, 2021, Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes, Nano-Micro Lett., 13, 73, 10.1007/s40820-021-00594-7 Han, 2023, Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups, Chem. Eng. J., 452, 10.1016/j.cej.2022.139090 Meng, 2022, Tuning Zn-ion solvation chemistry with chelating ligands toward stable aqueous Zn anodes, Adv. Mater., 34, 10.1002/adma.202200677 Wu, 2022, Cyclohexanedodecol-assisted interfacial engineering for robust and high-performance zinc metal anode, Nano-Micro Lett., 14, 110, 10.1007/s40820-022-00846-0 Cao, 2022, Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries, Energy Environ. Sci., 15, 499, 10.1039/D1EE03377H Sun, 2021, Simultaneous regulation on solvation shell and electrode interface for dendrite-Free Zn ion batteries achieved by a low-cost glucose additive, Angew. Chem. Int. Ed., 60, 18247, 10.1002/anie.202105756 Han, 2022, Interface engineering via in-situ electrochemical induced ZnSe for a stabilized zinc metal anode, Chem. Eng. J., 442, 10.1016/j.cej.2022.136247 Chen, 2023, Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity, Energy Environ. Sci., 16, 275, 10.1039/D2EE02931F Liu, 2022, Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase, Energy Environ. Sci., 15, 1872, 10.1039/D2EE00209D Deng, 2020, A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode, Adv. Funct. Mater., 30, 10.1002/adfm.202000599 Kang, 2018, Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8, 10.1002/aenm.201801090 Hao, 2020, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries, Adv. Mater., 32, 10.1002/adma.202003021 Wu, 2021, Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode, Nano-Micro Lett., 13, 79, 10.1007/s40820-021-00599-2 Wang, 2022, Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers, Adv. Mater., 34 Zhao, 2019, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12, 1938, 10.1039/C9EE00596J Hao, 2020, Designing dendrite-free zinc anodes for advanced aqueous zinc batteries, Adv. Funct. Mater., 30, 10.1002/adfm.202001263 Hu, 2021, Strategies for the enhanced water splitting activity over metal–organic frameworks-based electrocatalysts and photocatalysts, Mater, Today Nano, 15 Zhang, 2019, Goal-directed design of metal–organic frameworks for liquid-phase adsorption and separation, Coord. Chem. Rev., 378, 310, 10.1016/j.ccr.2017.10.028 Li, 2016, Emerging multifunctional metal–organic framework materials, Adv. Mater., 28, 8819, 10.1002/adma.201601133 Zhang, 2020, The optimized interfacial compatibility of metal–organic frameworks enables a high-performance quasi-solid metal battery, ACS Energy Lett., 5, 2919, 10.1021/acsenergylett.0c01517 He, 2022, Redistribution of electronic density in channels of metal–Organic frameworks for high-performance quasi-solid lithium metal batteries, Energy Storage Mater., 47, 271, 10.1016/j.ensm.2022.02.003 Liu, 2021, Metal-organic framework composites as green/sustainable catalysts, Coord. Chem. Rev., 436, 10.1016/j.ccr.2021.213827 Wei, 2022, Metal-organic frameworks and their derivatives in stable Zn metal anodes for aqueous Zn-ion batteries, ChemPhysMater, 1, 252, 10.1016/j.chphma.2021.09.003 Li, 2020, Molecular-scale interface engineering of metal–organic frameworks toward ion transport enables high-performance solid lithium metal battery, Adv. Funct. Mater., 30 Sharifzadeh, 2022, Amine-functionalized metal-organic frameworks: from synthetic design to scrutiny in application, Coord. Chem. Rev., 459, 10.1016/j.ccr.2022.214445 Liu, 2019, Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect, ACS Appl. Mater. Interfaces, 11, 32046, 10.1021/acsami.9b11243 Fan, 2022, Anion-functionalized interfacial layer for stable Zn metal anodes, Nano Energy, 103, 10.1016/j.nanoen.2022.107751 Yang, 2020, Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 9377, 10.1002/anie.202001844 Liu, 2020, Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes, Adv. Sci., 7, 10.1002/advs.202002173 Cao, 2020, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 19292, 10.1002/anie.202008634 Zhao, 2022, Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes, Energy Storage Mater., 53, 322, 10.1016/j.ensm.2022.09.014 Cavka, 2008, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130, 13850, 10.1021/ja8057953 Zhang, 2020, Multiscale optimization of Li-ion diffusion in solid lithium metal batteries via ion conductive metal–organic frameworks, Nanoscale, 12, 6976, 10.1039/C9NR10338D Jung, 2011, Review paper: semiconductor nanoparticles with surface passivation and surface plasmon, Electron. Mater. Lett., 7, 185, 10.1007/s13391-011-0902-4 Zhang, 2023, Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive, Angew. Chem. Int. Ed., 62 Yang, 2021, Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes, Adv. Mater., 33 Xie, 2020, Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes, Energy Environ. Sci., 13, 503, 10.1039/C9EE03545A Qiu, 2019, Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation, Nat. Commun., 10, 5374, 10.1038/s41467-019-13436-3 Huang, 2021, Optimizing engineering of rechargeable aqueous zinc ion batteries to enhance the zinc ions storage properties of cathode material, J. Power Sources, 490, 10.1016/j.jpowsour.2021.229528