Manin triples for Lie bialgebroids
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] M. Bangoura, Quasi-groupes de Lie-Poisson, C.R. Acad. Sci. Paris 319 (1994) 974-978.
[2] M.Bangoura, and Y.Kosmann-Schwarzbach, The double of a Jacobian quasi-bialgebra, Lett. Math. Phys. 28 (1993) 13-29.
[3] R. Brown, G. Danesh-Naruie and G. P. L. Hardy, Topological groupoids: II. Covering morphisms and G-spaces, Math. Nachr. 74 (1976) 143-156.
[5] I. Ya. Dorfman, Dirac structures and integrability of nonlinear evolution equations, Wiley, Chichester, 1993.
[6] V. G. Drinfel'd, Quantum groups, Proc. Internat. Congr. Math., Berkeley, 1986, 789-820.
[7] V. G. Drinfel'd, Quantum groups, Quasi-Hopf algebras, Leningrad Math. J. 2 (1991) 829-860.
[8] V. G. Drinfel'd, Quantum groups, On Poisson homogeneous spaces of Poisson-Liegroups, Theoret. and Math. Phys. 95 (1993) 524-525.
[9] V. A. Ginzburg, Resolution of diagonals and moduli spaces, The Moduli Space of Curves, (R. Dijkgra et al, eds.) Birkhauser, Boston, 1995, 231-266.
[11] Y. Kosmann-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie groups, Contemp. Math. 132 (1992) 459-489.
[12] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995) 153-165.
[13] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst.Poincare Phys. Theor. 53 (1990) 35-81.
[15] S. Levendorskii and Y. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991) 141-170.
[16] Z.-J. Liu and M. Qian, Generalized Yang-Baxter equations, Koszul operators and Poisson Lie groups, J. Differential Geom. 35 (1992) 399-414.
[17] Z.-J. Liu, A. Weinstein and P. Xu, Dirac structures and Poisson homogeneous spaces, Preprint, 1996.
[19] J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations, and the Bruhat decomposition, J. Differential Geom. 31 (1990) 501-526.
[20] K. Mackenzie, Lie groupoids and Lie algebroids in Differential geometry, London Math. Soc. Lecture Note Ser. 124, Cambridge Univ. Press, 1987.
[21] K. Mackenzie, Double Lie algebroids and second-order geometry I, Adv. in Math. 94 (1992) 180-239.
[22] K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 18 (1994) 415-452.
[24] J. E. Marsden and T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986) 161-169.
[25] A. Medina and P. Revoy, Algebres de Lie et produit scalaire invariant, Ann. Sci. Ecole Norm. Sup. (4) 18 (1985) 553-561.
[26] A. Medina and P. Revoy, Groupes de Lie-Poisson et double extension, Seminaire Gaston-Darboux de Geometrie et Topologie Di erentielle 1990-1991, Universite Montpellier II, 1992, 87-105.
[27] K. Mikami and A. Weinstein, Moments and reduction for symplectic groupoid actions, Publ. Res. Inst. Math. Sci., Kyoto Univ. 24 (1988) 121-140.
[28] J. Millson, Rational homotopy theory and deformation problems from algebraic geometry, Proc. Internat. Congr. Math., Kyoto, Japan, 1990, Springer, Tokyo, 1991, 549-558.
[29] M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci., Kyoto Univ. 21 (1985) 1237-1260.
[31] I. Vaisman, Complementary 2-forms of Poisson structures, Compositio Math., to appear.
[32] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983) 523-557.