Manifold learning and maximum likelihood estimation for hyperbolic network embedding

Gregorio Alanis-Lobato1, Pablo Mier1, Miguel A. Andrade‐Navarro1
1Institute of Molecular Biology, Ackermannweg 4, Mainz, 55128, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alanis-Lobato, G, Andrade-Navarro MA (2016) Distance distribution between complex network nodes in hyperbolic space. Complex Syst 25(3): 223–236.

Alanis-Lobato, G, Andrade-Navarro MA, Schaefer MH (2016) HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Research. doi: 10.1093/nar/gkw985 .

Alanis-Lobato, G, Mier P, Andrade-Navarro MA (2016) Efficient embedding of complex networks to hyperbolic space via their Laplacian. Sci Rep 6: 30108. doi: 10.1038/srep30108 .

Aste, T, Di Matteo T, Hyde S (2005) Complex networks on hyperbolic surfaces. Physica A 346(1-2): 20–26.

Aste, T, Gramatica R, Di Matteo T (2012) Exploring complex networks via topological embedding on surfaces. Phys Rev E 86(3): 036109. doi: 10.1103/PhysRevE.86.036109 .

Barabási, AL, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512.

Barthélemy, M (2011) Spatial networks. Phys Rep 499(1-3): 1–101. doi: 10.1016/j.physrep.2010.11.002 .

Belkin, M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv NeurI(14): 585–591.

Boguñá, M, Krioukov D, Claffy KC (2009) Navigability of complex networks. Nat Phys 5(1): 74–80. doi: 10.1038/nphys1130 .

Cannistraci, CV, Alanis-Lobato G, Ravasi T (1613) From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks. Sci Rep 3. doi: 10.1038/srep01613 .

Cannistraci, CV, Alanis-Lobato G, Ravasi T (2013b) Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics 29(13): i199–i209. doi: 10.1093/bioinformatics/btt208 .

Cayton, L (2005) Algorithms for manifold learning. UCSD tech report CS2008-0923: 1–17. http://www.lcayton.com/resexam.pdf . Accessed 30 Mar 2016.

Cederlöf, J (2003) The OpenPGP web of trust. http://www.lysator.liu.se/~jc/wotsap/wots2/ . Accessed 08 Sept 2015.

Colizza, V, Pastor-Satorras R, Vespignani A (2007) Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nat Phys 3: 276–282. doi: 10.1038/nphys560 .

Dall, J, Christensen M (2002) Random geometric graphs. Phys Rev E 66(1): 016121. doi: 10.1103/PhysRevE.66.016121 .

Ferretti, L, Cortelezzi M (2011) Preferential attachment in growing spatial networks. Phys Rev E 84(1): 016103. doi: 10.1103/PhysRevE.84.016103 .

Goh, KI, Salvi G, Kahng B, Kim D (2006) Skeleton and fractal scaling in complex networks. Phys Rev Lett 96(1): 018701. doi: 10.1103/PhysRevLett.96.018701 .

Kleinberg, R (2007) Geographic routing using hyperbolic space In: INFOCOM 2007. 26th IEEE International Conference on Computer Communications, 1902–1909.. IEEE Computer Society, Washington, DC, doi: 10.1109/INFCOM.2007.221 .

Krioukov, D, Papadopoulos F, Kitsak M, Vahdat A, Boguñá M (2010) Hyperbolic geometry of complex networks. Phys Rev E 82(3): 036106. doi: 10.1103/PhysRevE.82.036106 .

Kuchaiev, O, Rašajski M, Higham DJ, Pržulj N (2009) Geometric De-noising of protein-protein interaction networks. PLoS Comput Biol 5(8): e1000454. doi: 10.1371/journal.pcbi.1000454 .

Mier, P, Andrade-Navarro MA (2016) FastaHerder2: four ways to research protein function and evolution with clustering and clustered databases. J Comput Biol 23: 270–278. doi: 10.1089/cmb.2015.0191 .

Newman, M, Peixoto TP (2015) Generalized communities in networks. Phys Rev Lett 115(8): 088701. doi: 10.1103/PhysRevLett.115.088701 .

Newman, MEJ (2002) Assortative Mixing in Networks. Phys Rev Lett 89(20). doi: 10.1103/PhysRevLett.89.208701 .

Papadopoulos, F, Krioukov D, Boguñá M, Vahdat A (2010) Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces In: INFOCOM, 2010 Proceedings IEEE, 1–9.. IEEE Press, Piscataway, NJ, doi: 10.1109/INFCOM.2010.5462131 .

Papadopoulos, F, Kitsak M, Serrano MA, Boguñá M, Krioukov D (2012) Popularity versus similarity in growing networks. Nature 489(7417): 537–540. doi: 10.1038/nature11459 .

Papadopoulos, F, Aldecoa R, Krioukov D (2015a) Network geometry inference using common neighbors. Phys Rev E 92(2): 022807. doi: 10.1103/PhysRevE.92.022807 .

Papadopoulos F, Psomas C, Krioukov D (2015b) Network mapping by replaying hyperbolic growth. IEEE ACM T Netw 23(1): 198–211. doi: 10.1109/TNET.2013.2294052 .

Schaefer, MH, Fontaine JF, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA (2012) HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS ONE 7(2): e31826. doi: 10.1371/journal.pone.0031826 .

Schneier, B (1996) Applied cryptography. John Wiley & Sons, NJ, USA.

Serrano, MA, Krioukov D, Boguñá M (2008) Self-similarity of complex networks and hidden metric spaces. Phys Rev Lett 100(7): 078701. doi: 10.1103/PhysRevLett.100.078701 .

Shaw, B, Jebara T (2009) Structure preserving embedding In: Proceedings of the 26th Annual International Conference on Machine Learning, 937–944.. ACM, New York.

Song, C, Havlin S, Makse HA (2006) Origins of fractality in the growth of complex networks. Nat Phys 2(4): 275–281. doi: 10.1038/nphys266 .

Tenenbaum, JB (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500): 2319–2323. doi: 10.1126/science.290.5500.2319 .

You, ZHH, Lei YKK, Gui J, Huang DSS, Zhou X (2010) Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26(21): 2744–2751. doi: 10.1093/bioinformatics/btq510 .

Zemel, RS, Carreira-Perpiñán MA (2004) Proximity graphs for clustering and manifold learning. Adv NeurI(17): 225–232.