Quản lý Động vật Biển và Ngành Thủy sản: Mô hình Lập trình Đã Hiệu chỉnh cho Tương tác giữa Hải Cẩu và Ngành Thủy sản tại Thụy Điển

Springer Science and Business Media LLC - Tập 81 - Trang 501-530 - 2021
Torbjörn Jansson1, Staffan Waldo1
1Department of Economics, AgriFood Economics Centre, Swedish University of Agricultural Sciences, Lund, Sweden

Tóm tắt

Bài báo này phát triển một mô hình dựa trên khái niệm Lập trình Toán học Tích cực (Positive Mathematical Programming - PMP), hữu ích cho các phân tích trước khi thực hiện chính sách về tác động của các biện pháp chính sách đối với ngành thủy sản thương mại. Các mô hình PMP thường được sử dụng trong nông nghiệp nhưng hiếm khi được áp dụng để phân tích ngành thủy sản. Ngành thủy sản thường đối mặt với một loạt các ràng buộc lớn như quy định về nỗ lực đánh bắt và hạn ngạch cá, trong đó một số có thể là ràng buộc và một số không. Một phương pháp kinh tế lượng được phát triển để hiệu chỉnh các mô hình với cả ràng buộc có và không có. Tương tác giữa hải cẩu và ngành thủy sản Thụy Điển được sử dụng như một ứng dụng thực nghiệm. Tương tác giữa hải cẩu được mô hình hóa như việc hải cẩu săn đuổi cá từ các thiết bị đánh bắt thụ động (lưới và móc câu), vấn đề này chủ yếu ảnh hưởng đến ngành thủy sản ven biển. Mô hình bao gồm 24 phân khúc đội tàu tham gia 247 hoạt động đánh bắt khác nhau vào năm 2012. Các kết quả cho thấy rằng nếu không có hành động quản lý bổ sung nào được thực hiện, các ngành thủy sản sử dụng thiết bị đánh bắt thụ động sẽ giảm hoạt động của họ từ khoảng 46.000 ngày ra khơi mỗi năm xuống khoảng 41.000 ngày và giảm hiệu suất kinh tế từ khoản lỗ khoảng 2 triệu Euro xuống khoảng 3,3 triệu Euro. Tác động từ hải cẩu có thể được giảm bớt bằng cách giảm số lượng hải cẩu hoặc cung cấp bồi thường kinh tế.

Từ khóa

#Lập trình Toán học Tích cực #ngành thủy sản #hải cẩu #ràng buộc #kinh tế lượng #phân tích chính sách

Tài liệu tham khảo

Arata L, Donati M, Sckokai P, Arfini F (2017) Incorporating risk in a positive mathematical programming framework: a dual approach. Aust J Agric Res Econ 61(2):265–284. https://doi.org/10.1111/1467-8489.12199 Basnet K, Jansson T, Heckelei T (2021) A Bayesian econometric and risk programming approach for analysing the wealth effect of decoupled payments in Sweden. Aust J Agric Resour Econ 65:729 Bauer S, Kasnakoglu H (1990) Non-linear programming models for sector and policy analysis: experiences with the Turkish agricultural sector model. Econ Modell 7(3):275–29 Bergenius M, Ringdahl K, Sundelöf A, Carlshamre S, Wennhage H, Valentinsson D (2018) Atlas över svenskt kust- och havsfiske 2003–2015. Aqua reports 2018:3. Sveriges lantbruksuniversitet, Institutionen för akvatiska resurser, Drottningholm Lysekil Öregrund. Bosetti V, Pearce DW (2003) A study of environmental conflict: the economic value of grey seals in Southwest England. Biodivers Conserv 13:2361–2392 Boncoeur J, Alban F, Guyader O, Thébaud O (2002) Fish, fishers, seals and tourists: economic consequences of creating a marine reserve in a multi-species multi-activity context. Nat Resour Model 15(4):387–411 Brinson A, Thunberg E (2016) Perfornmance of federally managed catch share fisheries in the United States. Fish Res 179:213–223 Buysse J, Van Huylenbroeck G, Lauwers L (2007) Normative, positive and econometric mathematical programming as tools for incorporation of multifunctionality in agricultural policy modelling. Agr Ecosyst Environ 120(1):70–81 Cook R, Trijoulet V (2016) The effects of grey seal predation and commercial fishing on the recovery of a depleted cod stock. Can J Fish Aquat Sci 73(9):1319–1329 Costalago D, Baue B, Tomczak M, Lundström K, Winder M (2019) The necessity of a holistic approach when managing marine mammal-fisheries interactions: environment and fisheries impact are stronger than seal predation. Ambio 48:552–564 Cronin M, Jessopp M, Houle J, Reid D (2014) Fishery-seal interactions in Irish waters: current perspectives and future research priorities. Mar Policy 44:120–130 Eero M, Hjelm J, Behrens J, Buchmann K, Cardinale M, Casini M, Gasyukov P, Holmgren N, Horbowy J, Hussy K, Kirkegaard E, Kornilovs G, Krumme UW, Köster F, Oeberst R, Plikshs M, Radtke K, Raid T, Schmid J, Tomczak M, Vinther M, Zimmermann C, Storr-Paulsen M (2015) Eastern baltic cod in distress: biological changes and challenges for stock assessment. ICES J Mar Sci 72(8):2180–2186 European Commission (2009) Council Regulation (EC) No. 1224/2009 of November 20, 2009. Establishing a Community Control System for Ensuring Compliance with the Rules of the Common Fisheries Policy, with Amendments. Official Journal of the European Union, Brussels, EC, 2009. European Union (1992) The Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora. Official Journal of the European Communities No. L 206/7. European Union (2008a) Directive 2008/56/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive) Official Journal of the European Communities No. L 164/19. European Union (2008b) Council Regulation (EC) No. 1342/2008 of December 18, 2008. Establishing a Long-Term Plan for Cod Stocks and the Fisheries Exploiting those Stocks and Repealing Regulation (EC) No 423/2004. Official Journal of the European Union 24.12.2008 European Union (2013) Common Fisheries Policy. Regulation (EU) No. 1380/2013 of the European Parliament and of the Council, December 11, 2013. Facchinei F, Jiang H, Qi L (1999) A smoothing method for mathematical programs with equilibrium constraints. Math Program 85(1):107–134 Finnoff D, Tschirhart J (2003) Protecting an endangered species while harvesting its prey in a general equilibrium ecosystem model. Land Econ 79(2):160–180 Flaaten O, Stollery K (1996) The Economic Cost of biological predation: theory and application to the case of the Northeast Atlantic minke whale’s (balaenoptera acutorostrata) consumption of fish. Environ Resour Econ 8:75–95 Frost H, Andersen P, Hoff A (2013) Management of complex fisheries: lessons learned from a simulation model. Can J Agric Econ 61:283–307 Greene WH (2003) Econometric analysis. Prentice Hall, New Jersey Goldswothy S, Bailleul F, Nursey-Bray M, Mackay A, Oxley A, Reinhold S-L, Shaughnessy P (2019) Assessment of the impact of seal population on the seafood industry in South Australia. Assessment of the impacts of seals on the seafood industry in South Australia. Assessment of the impacts of seals on the seafood industry in South Australia. Hansson S, Bergström U, Bonsdorff E, Härkönen T, Jepsen N, Kautsky L, Lundström K, Lunneryd SG, Ovegård M, Salmi J, Sendek D, Vetemaa M (2017) Competition for the fish-fish extraction from the baltic sea by humans, aquatic mammals and birds. ICES J Mar Sci 75(3):999–1008 Harding K, Härkönen T (1999) Development in the baltic grey seal (Halichoerus grypus) and Ringed Seal (Phoca hispida) populations during the 20th century. Ambio 28(7):619–627 Heckelei T (2002) Calibration and estimation of programming models for agricultural supply analysis. Rheinische Friedrich-Wilhelms-Universität Bonn, Habilitationsschrift Heckelei T, Wolff H (2003) Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy. Eur Rev Agric Econ 30(1):27–50 Heckelei T, Britz W, Zhang Y (2012) Positive mathematical programming approaches – RECENT developments in literature and applied modelling. Bio-Based Appl Econ 1(1):109–124. https://doi.org/10.13128/BAE-10567 Helcom (2018) Distribution of Baltic Seals. Helcom Core Indicator Report of July 2018. Helcom Indicators. Hemmingsson M, Fjälling A, Lunneryd SG (2008) The pontoon trap: description and function of a seal-safe trap-net. Fisheries Res 93:357359 Holma M, Lindroos M, Oinonen S (2014) The economics of conflicting interests: northern baltic salmon fishery adaption to gray seal abundance. Nat Resour Model 27(3):275–299 Howitt RE (1995) Positive mathematical programming. Am J Agr Econ 77(2):329–342 Jackman J, Bettencourt L, Vaske J, Sweeney M, Bloom K, Rutberg A, Brook B (2018) Conflict and consensus in stakeholder views of seal management on Nantucket Island, MA, USA. Mar Policy 95:166–173 Jansson T, Heckelei T (2009) A new estimator for trade costs and its small sample properties. Econ Model 26(2):489–498 Jansson T, Heckelei T (2010) Estimation of parameters of constrained optimization models. In: Gilbert J (ed) New developments in computable general equilibrium analysis for trade policy. Emerald Group Publishing, UK Jansson T, Heckelei T (2011) Estimating a primal model of regional crop supply in the European Union. J Agric Econ 62(1):137–152 Johansson M, Waldo Å (2020) Local people’s appraisal of the fishery-seal situation in traditional fishing villages on the Baltic Sea Coast in Southeast Sweden. Soc Nat Resour. https://doi.org/10.1080/08941920.2020.1809756 Jonasson L, Apland J (1997) Frontier technology and inefficiencies in programming sector models: An application to Swedish agriculture. Eur Rev Agric Econ 24(1):109–131. https://doi.org/10.1093/erae/24.1.109 Königson S, Fjälling A, Lunneryd SG (2007) Grey seal induced catch losses in the herring gillnet fishery n the Northern Baltic. NAMMCO Scientific Publ 6:203–213 Königson SJ, Fredriksson RE, Lunneryd SG, Strömberg P, Bergström UM (2015) Cod pots in a baltic fishery: are they efficient and what affects their efficiency? ICES J Mar Sci 72(5):1545–1554 Königson S, Lunneryd SG, Stridh H, Sundqvist F (2009) Grey seal predation in cod gillnet fisheries in the central Baltic Sea. J Northwest Atlantic Fisheries Sci 42:41–47 Lent R, Squires D (2017) Reducing marine mammal bycatch in global fisheries: an economics approach. Deep-Sea Res Part II 140:268–277 Magera A, Mills Flemming J, Kaschner K, Christensen L, Lotze H (2013) Recovery trends in marine mammal populations. PLoS ONE 8:10 Mérel P, Bucaram S (2010) Exact calibration of programming models of agricultural supply against exogenous supply elasticities. Eur Rev Agric Econ 37(3):395–418 Nielsen JR, Thunberg E, Holland D et al (2018) Integrated ecological-economic fisheries models - evaluation, review and challenges for implementation. Fish Fish 19:1–29 Nilssen K, Lindstrøm U, Westgaard J, Lindblom L, Blencke TR, Haug T (2019) Diet and prey consumption of grey seals (Halichoerus grypus) in Norway. Mar Biol Res 15(2):137–149. https://doi.org/10.1080/17451000.2019.1605182 Nunny L, Simmonds M, Butterworth A (2018) A review of seal killing practice in Europe: implications for animal welfare. Mar Policy 98:121–132 Pollnac R, Seara T, Colburn L (2015) Aspects of fishery management, job satisfaction, and well-being among commercial fishermen in the Northeast Region of the United States. Soc Nat Resour 28:75–92 Prellezo R, Accadia P, Andersen JL, Andersen BS, Buisman E, Little A, Nielsen JR, Poos JJ, Powell J, Röckmann C (2012) A Review of EU bio-economic models for fisheries: the value of a diversity of models. Mar Policy 36:423–431 Read A (2008) The looming crisis: interactions between marine mammals and fisheries. J Mammal 89(3):541–548 Read A, Drinker P, Northridge S (2006) Bycatch of marine mammals in US and global fisheries. Conserv Biol 20(1):163–169 Reidy R (2019) Understanding the barriers to reconciling marine mammal-fishery conflicts: a case study in British Columbia. Mar Policy. https://doi.org/10.1016/j.marpol.2019.103635 Ryan C, Bolin V, Shirra L, Garrard P, Putsey J, Vines J, Hartny-Mills L (2018) The development and value of whale-watch tourism in the West of Scotland. Tour Mar Environ 13(1):17–24 Röhm O, Dabbert S (2003) Integrating Agri-Environmental Programs into Regional Production Models: An Extension of Positive Mathematical Programming. American Journal of Agricultural Economics 85(1):254–265 Available at: http://www.jstor.org/stable/1244941 Salz P, Buisman FC, Soma K, Frost H, Accadia P, Prellezo R (2011) FISHRENT; Bio-economic simulation and optimisation model. LEI report 2011–024. Available at: http://edepot.wur.nl/169748 SFS 2008:437. Förordning (2008:437) om statligt stöd av mindre betydelse inom jordbrukssektorn och sektorn för fiskeri och vattenbruk. Näringsdepartementet. In Swedish. Shackelford G, Steward P, German R, Sait S, Benton T (2015) Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature. Divers Distrib 21:357–367 Sokolova M, Buchmann K, Huwer B, Kania PW, Krumme U, Galatius A, Hemmer-Hansen J, Behrens JW (2018) Spatial patterns in infection of cod Gadus morhua with the seal-associated liver worm Contracaecum osculatum Sensu Stricto from the Skagerrak to the Central Baltic Sea. Mar Ecol - Progr Ser 606:105–118 STECF (2018) The 2018 Annual Economic Report on the EU Fishing Fleet: Scientific, Technical and Economic Committee for Fisheries (STECF) Publications Office of the European Union, Luxembourg, 2018. SwAM (2012) Nationell förvaltningsplan för gråsäl (Halichoerus grypus) i Östersjön. Havs- och vattenmyndigheten 2012–09–24. Gothenburg. In Swedish. SwAM (2019) Reviderad nationell förvaltningsplan för gråsäl (Halichoerus grypus) i Östersjön. Havs- och vattenmyndighetens rapport 2019:24.Gothenburg. In Swedish. SwAM (2014) Sälpopulationernas tillväxt och utbredning samt effekterna av sälskador i fisket. Redovisning av ett regeringsuppdrag. Swedish Agency for Marine and Water Management, report 2014–12–30. In Swedish. SwAM and Swedish Board of Agriculture. 2021. Strategi för svenskt fiske och vattenbruk 2021–2026 – friska ekosystem och hållbart nyttjande. Swedish Agency for Marine and Water Management and Swedish Board of Agriculture. Accessed 202108–26 at https://webbutiken.jordbruksverket.se/sv/artiklar/ovr598.html Swedish EPA (2020) Beslut om licensjakt efter gråsäl 2020 och början av 2021. Swedish Environmental Protection Agency No NV-00236–20. 2020–04–06. In Swedish. Sweeney JR, Howitt RE, Ling Chan H, Pan M, Leung P (2017) How do fishery policies Affect Hawaii’s longline fishing industry? calibrating a positive mathematical programming model. Nat Res Model 30(2):941 Waldo S, Blomquist J (2020) Var är det lönt att fiska? – en analys av fisket i svenska regioner. AgriFood Fokus Rapport 2020:2 Waldo S, Paulrud A, Blomquist J (2020) The economic costs of seal presence in Swedish small-scale fisheries. ICES J Mar Sci 77(2):815–825 Waldo Å, Johansson M, Blomquist J, Jansson T, Königson S, Lunneryd SG, Persson A, Waldo S (2020) Local attitudes towards management measures for the co-existence of seals and coastal fisheries – A Swedish case study. Marine Policy 118:104018 Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol 9:275–285 Wickens P (1995) A Review of Operational Interactions between Pinnipeds and Fisheries. FAO Fisheries Technical Paper 346. Food and Agricultural Organization of the United Nations, Rome. Wood SA, Frasier TR, McLeod BA, Gilbert JR, White BN, Bowen BD, Mammill MO, Waring GT, Brault S (2011) The genetics of recolonization: an analysis of the stock structure of grey seals (Halichoerus grypus) in the Northwest Atlantic. Can J Zool 89:490–497