Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists

Annals of Oncology - Tập 29 Số 8 - Trang 1836-1842 - 2018
Holger A. Haenssle1, Christine Fink1, Roland Schneiderbauer1, Ferdinand Toberer1, Timo Buhl2, Andreas Blum3, Aadi Kalloo4, Arafa Hassen5, L. Thomas6, Alexander Enk1, Lorenz Uhlmann7, Christina Alt, Monika Arenbergerová, Renato Marchiori Bakos, Anne Baltzer, Ines Bertlich, Therezia Bokor‐Billmann, Jonathan Bowling, Naira Braghiroli, Ralph P. Braun, Kristina Buder‐Bakhaya, Horacio Cabo, Leo Čabrijan, Naciye Cevic, Anna Claßen, David Deltgen, Ivelina Georgieva, Lara‐Elena Hakim‐Meibodi, Susanne Hanner, Fritz Hartmann, Julia Hartmann, Georg Haus, Elti Hoxha, Raimonds Karls, Hiroshi Koga, Jürgen Kreusch, Aimilios Lallas, Pawel Majenka, Ashfaq Marghoob, Cesare Massone, Lali Mekokishvili, Dominik Mestel, V. Meyer, Anna Neuberger, K. Nielsen, Margaret Oliviero, Riccardo Pampena, John Paoli, Erika Pawlik, Barbar Rao, Adriana Rendón, Teresa Russo, Ahmed Sadek, Kinga T. Samhaber, Anissa Schweizer, Lukas Trennheuser, Lyobomira Vlahova, Alexander Wald, Julia K. Winkler, Priscila Wölbing, Iris Zalaudek
1Department of Dermatology, University of Heidelberg, Heidelberg, Germany
2Department of Dermatology, University of Göttingen, Göttingen, Germany
3Office Based Clinic of Dermatology, Konstanz, Germany
4Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
5Faculty of Computer Science and Mathematics, University of Passau, Passau, Germany
6Department of Dermatology, Lyons Cancer Research Center, Lyon 1 University, Lyon, France
7Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Koh, 2007, Melanoma screening: focusing the public health journey, Arch Dermatol, 143, 101, 10.1001/archderm.143.1.101

Nikolaou, 2014, Emerging trends in the epidemiology of melanoma, Br J Dermatol, 170, 11, 10.1111/bjd.12492

Vestergaard, 2008, Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting, Br J Dermatol, 159, 669

Bafounta, 2001, Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests, Arch Dermatol, 137, 1343, 10.1001/archderm.137.10.1343

Salerni, 2013, Meta-analysis of digital dermoscopy follow-up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society, J Eur Acad Dermatol Venereol, 27, 805, 10.1111/jdv.12032

Dolianitis, 2005, Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions, Arch Dermatol, 141, 1008, 10.1001/archderm.141.8.1008

Carli, 2003, Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology, Br J Dermatol, 148, 981, 10.1046/j.1365-2133.2003.05023.x

Barata, 2015, Improving dermoscopy image classification using color constancy, IEEE J Biomed Health Inform, 19, 1

Glaister, 2014, Segmentation of skin lesions from digital images using joint statistical texture distinctiveness, IEEE Trans Biomed Eng, 61, 1220, 10.1109/TBME.2013.2297622

Garnavi, 2012, Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis, IEEE Trans Inform Technol Biomed, 16, 1239, 10.1109/TITB.2012.2212282

Kaya, 2016, Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images, BMC Bioinformatics, 17, 367, 10.1186/s12859-016-1221-4

Pehamberger, 1987, In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions, J Am Acad Dermatol, 17, 571, 10.1016/S0190-9622(87)70239-4

Esteva, 2017, Dermatologist-level classification of skin cancer with deep neural networks, Nature, 542, 115, 10.1038/nature21056

C Szegedy, V Vanhoucke, S Ioffe et al. Rethinking the inception architecture for computer vision 2015. https://arxiv.org/abs/1512.00567 (9 May 2018, date last accessed).

Marchetti, 2018, Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images, J Am Acad Dermatol, 78, 270, 10.1016/j.jaad.2017.08.016

Menzies, 2001, Short-term digital surface microscopic monitoring of atypical or changing melanocytic lesions, Arch Dermatol, 137, 1583, 10.1001/archderm.137.12.1583

Altamura, 2008, Assessment of the optimal interval for and sensitivity of short-term sequential digital dermoscopy monitoring for the diagnosis of melanoma, Arch Dermatol, 144, 502, 10.1001/archderm.144.4.502

Menzies, 2009, Impact of dermoscopy and short-term sequential digital dermoscopy imaging for the management of pigmented lesions in primary care: a sequential intervention trial, Br J Dermatol, 161, 1270, 10.1111/j.1365-2133.2009.09374.x

Menzies, 2011, Variables predicting change in benign melanocytic nevi undergoing short-term dermoscopic imaging, Arch Dermatol, 147, 655, 10.1001/archdermatol.2011.133

Ferris, 2015, Computer-aided classification of melanocytic lesions using dermoscopic images, J Am Acad Dermatol, 73, 769, 10.1016/j.jaad.2015.07.028

Hauschild, 2014, To excise or not: impact of MelaFind on German dermatologists' decisions to biopsy atypical lesions, J Dtsch Dermatol Ges, 12, 606