Mammalian HECT ubiquitin-protein ligases: Biological and pathophysiological aspects
Tài liệu tham khảo
Kerscher, 2006, Modification of proteins by ubiquitin and ubiquitin-like proteins, Annu. Rev. Cell Dev. Biol., 22, 159, 10.1146/annurev.cellbio.22.010605.093503
Varshavsky, 2012, The ubiquitin system, an immense realm, Annu. Rev. Biochem., 81, 167, 10.1146/annurev-biochem-051910-094049
Metzger, 2012, HECT and RING finger families of E3 ubiquitin ligases at a glance, J. Cell Sci., 125, 531, 10.1242/jcs.091777
Scheffner, 2007, HECT E3s and human disease, BMC Biochem., 8, S6, 10.1186/1471-2091-8-S1-S6
Rotin, 2009, Physiological functions of the HECT family of ubiquitin ligases, Nat. Rev. Mol. Cell Biol., 10, 398, 10.1038/nrm2690
Deshaies, 2009, RING domain E3 ubiquitin ligases, Annu. Rev. Biochem., 78, 399, 10.1146/annurev.biochem.78.101807.093809
Wenzel, 2012, UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids, Nature, 474, 105, 10.1038/nature09966
Smit, 2012, The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension, EMBO J., 31, 3833, 10.1038/emboj.2012.217
Stieglitz, 2012, LUBAC synthesizes linear ubiquitin chains via a thioester intermediate, EMBO Rep., 13, 840, 10.1038/embor.2012.105
Wenzel, 2012, Following Ariadne's thread: a new perspective on RBR ubiquitin ligases, BMC Biol., 10, 24, 10.1186/1741-7007-10-24
Huibregtse, 1995, A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase, Proc. Natl. Acad. Sci. U. S. A., 92, 2563, 10.1073/pnas.92.7.2563
Lin, 2012, Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen–host interactions, Proc. Natl. Acad. Sci. U. S. A., 109, 1925, 10.1073/pnas.1115025109
Lin, 2011, Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7, J. Biol. Chem., 286, 441, 10.1074/jbc.M110.167643
Zhang, 2006, The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase, Mol. Microbiol., 62, 786, 10.1111/j.1365-2958.2006.05407.x
Diao, 2008, Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase, Nat. Struct. Mol. Biol., 15, 65, 10.1038/nsmb1346
Scheffner, 1995, Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade, Nature, 373, 81, 10.1038/373081a0
Marin, 2010, Animal HECT ubiquitin ligases: evolution and functional implications, BMC Evol. Biol., 10, 56, 10.1186/1471-2148-10-56
Kar, 2012, Human proteome-scale structural modeling of E2–E3 interactions exploiting interface motifs, J. Proteome Res., 11, 1196, 10.1021/pr2009143
Sheng, 2012, A human ubiquitin conjugating enzyme (E2)-HECT E3 ligase structure–function screen, Mol. Cell. Proteomics, 11, 329, 10.1074/mcp.O111.013706
Schwarz, 1998, Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7, J. Biol. Chem., 273, 12148, 10.1074/jbc.273.20.12148
Huang, 1999, Structure of an E6AP–UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade, Science, 286, 1321, 10.1126/science.286.5443.1321
Verdecia, 2003, Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase, Mol. Cell, 11, 249, 10.1016/S1097-2765(02)00774-8
Ogunjimi, 2005, Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain, Mol. Cell, 19, 297, 10.1016/j.molcel.2005.06.028
Kamadurai, 2009, Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin–HECT(NEDD4L) complex, Mol. Cell, 36, 1095, 10.1016/j.molcel.2009.11.010
Pandya, 2010, A structural element within the HUWE1 HECT domain modulates self-ubiquitination and substrate ubiquitination activities, J. Biol. Chem., 285, 5664, 10.1074/jbc.M109.051805
Kim, 2011, Structure and function of a HECT domain ubiquitin-binding site, EMBO Rep., 12, 334, 10.1038/embor.2011.23
Maspero, 2011, Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation, EMBO Rep., 12, 342, 10.1038/embor.2011.21
Matta-Camacho, 2012, Structure of the HECT C-lobe of the UBR5 E3 ubiquitin ligase, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 68, 1158, 10.1107/S1744309112036937
Harvey, 2002, N4WBP5, a potential target for ubiquitination by the Nedd4 family of proteins, is a novel Golgi-associated protein, J. Biol. Chem., 277, 9307, 10.1074/jbc.M110443200
Shearwin-Whyatt, 2006, Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins, Bioessays, 28, 617, 10.1002/bies.20422
Shearwin-Whyatt, 2004, N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking, J. Cell Sci., 117, 3679, 10.1242/jcs.01212
Shea, 2012, Mammalian alpha arrestins link activated seven transmembrane receptors to Nedd4 family e3 ubiquitin ligases and interact with beta arrestins, PLoS One, 7, e50557, 10.1371/journal.pone.0050557
Han, 2013, Distinct roles for beta-arrestin2 and arrestin-domain-containing proteins in beta(2) adrenergic receptor trafficking, EMBO Rep., 14, 164, 10.1038/embor.2012.187
Bhalla, 2005, Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3, Mol. Endocrinol., 19, 3073, 10.1210/me.2005-0193
Ichimura, 2005, 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase, J. Biol. Chem., 280, 13187, 10.1074/jbc.M412884200
Lee, 2007, Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2, J. Biol. Chem., 282, 29866, 10.1074/jbc.M701923200
Kee, 2007, Regulation of catalytic activities of HECT ubiquitin ligases, Biochem. Biophys. Res. Commun., 354, 329, 10.1016/j.bbrc.2007.01.025
Becuwe, 2012, Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family, Biochem. Res. Int., 2012, 242764, 10.1155/2012/242764
Polo, 2012, Signaling-mediated control of ubiquitin ligases in endocytosis, BMC Biol., 10, 25, 10.1186/1741-7007-10-25
Wiesner, 2007, Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain, Cell, 130, 651, 10.1016/j.cell.2007.06.050
Gallagher, 2006, Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change, Proc. Natl. Acad. Sci. U. S. A., 103, 1717, 10.1073/pnas.0510664103
Behrends, 2011, Constructing and decoding unconventional ubiquitin chains, Nat. Struct. Mol. Biol., 18, 520, 10.1038/nsmb.2066
Kravtsova-Ivantsiv, 2012, Non-canonical ubiquitin-based signals for proteasomal degradation, J. Cell Sci., 125, 539, 10.1242/jcs.093567
Komander, 2012, The ubiquitin code, Annu. Rev. Biochem., 81, 203, 10.1146/annurev-biochem-060310-170328
Kulathu, 2012, Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages, Nat. Rev. Mol. Cell Biol., 13, 508, 10.1038/nrm3394
Husnjak, 2012, Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions, Annu. Rev. Biochem., 81, 291, 10.1146/annurev-biochem-051810-094654
Wang, 2005, Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis, EMBO J., 24, 4324, 10.1038/sj.emboj.7600895
Kim, 2007, Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages, J. Biol. Chem., 282, 17375, 10.1074/jbc.M609659200
Scialpi, 2008, Itch self-polyubiquitylation occurs through lysine-63 linkages, Biochem. Pharmacol., 76, 1515, 10.1016/j.bcp.2008.07.028
Kim, 2009, Polyubiquitination by HECT E3s and the determinants of chain type specificity, Mol. Cell. Biol., 29, 3307, 10.1128/MCB.00240-09
Wang, 2006, Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase, EMBO J., 25, 1710, 10.1038/sj.emboj.7601061
Ogunjimi, 2010, The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates, J. Biol. Chem., 285, 6308, 10.1074/jbc.M109.044537
French, 2009, Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site, J. Biol. Chem., 284, 12071, 10.1074/jbc.M901106200
Hwang, 2010, The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases, Nat. Cell Biol., 12, 1177, 10.1038/ncb2121
Kumar, 1992, Identification of a set of genes with developmentally down-regulated expression in the mouse brain, Biochem. Biophys. Res. Commun., 185, 1155, 10.1016/0006-291X(92)91747-E
Kumar, 1997, cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene, Genomics, 40, 435, 10.1006/geno.1996.4582
Harvey, 1999, Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions, Trends Cell Biol., 9, 166, 10.1016/S0962-8924(99)01541-X
Staub, 1997, Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination, EMBO J., 16, 6325, 10.1093/emboj/16.21.6325
Sudol, 2000, NeW wrinkles for an old domain, Cell, 103, 1001, 10.1016/S0092-8674(00)00203-8
Yang, 2010, Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions, Cell Death Differ., 17, 68, 10.1038/cdd.2009.84
Katz, 2002, Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4, Traffic, 3, 740, 10.1034/j.1600-0854.2002.31006.x
Cao, 2008, Nedd4 controls animal growth by regulating IGF-1 signaling, Sci. Signal., 1, ra5, 10.1126/scisignal.1160940
Morrione, 1999, mGrb10 interacts with Nedd4, J. Biol. Chem., 274, 24094, 10.1074/jbc.274.34.24094
Huang, 2010, Structural basis for the interaction between the growth factor-binding protein GRB10 and the E3 ubiquitin ligase NEDD4, J. Biol. Chem., 285, 42130, 10.1074/jbc.M110.143412
Yang, 2008, Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells, Nat. Immunol., 9, 1356, 10.1038/ni.1670
Kawabe, 2010, Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development, Neuron, 65, 358, 10.1016/j.neuron.2010.01.007
Drinjakovic, 2010, E3 ligase Nedd4 promotes axon branching by downregulating PTEN, Neuron, 65, 341, 10.1016/j.neuron.2010.01.017
Liu, 2009, Abnormal development of the neuromuscular junction in Nedd4-deficient mice, Dev. Biol., 330, 153, 10.1016/j.ydbio.2009.03.023
Nagpal, 2012, The ubiquitin ligase nedd4-1 participates in denervation-induced skeletal muscle atrophy in mice, PLoS One, 7, e46427, 10.1371/journal.pone.0046427
Fouladkou, 2010, The ubiquitin ligase Nedd4-1 is required for heart development and is a suppressor of thrombospondin-1, J. Biol. Chem., 285, 6770, 10.1074/jbc.M109.082347
Liu, 2013, The histone deacetylase SIRT2 stabilizes Myc oncoproteins, Cell Death Differ., 20, 503, 10.1038/cdd.2012.147
Yasuda, 2003, Nedd4 regulates egress of Ebola virus-like particles from host cells, J. Virol., 77, 9987, 10.1128/JVI.77.18.9987-9992.2003
Timmins, 2003, Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4, J. Mol. Biol., 326, 493, 10.1016/S0022-2836(02)01406-7
Blot, 2004, Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding, J. Cell Sci., 117, 2357, 10.1242/jcs.01095
Kikonyogo, 2001, Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells, Proc. Natl. Acad. Sci. U. S. A., 98, 11199, 10.1073/pnas.201268998
Yasuda, 2002, Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding, EMBO Rep., 3, 636, 10.1093/embo-reports/kvf132
Bouamr, 2003, PPPYVEPTAP motif is the late domain of human T-cell leukemia virus type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101 [corrected], J. Virol., 77, 11882, 10.1128/JVI.77.22.11882-11895.2003
Vana, 2004, Role of Nedd4 and ubiquitination of Rous sarcoma virus Gag in budding of virus-like particles from cells, J. Virol., 78, 13943, 10.1128/JVI.78.24.13943-13953.2004
Segura-Morales, 2005, Tsg101 and Alix interact with murine leukemia virus Gag and cooperate with Nedd4 ubiquitin ligases during budding, J. Biol. Chem., 280, 27004, 10.1074/jbc.M413735200
Ikeda, 2003, Itchy, a Nedd4 ubiquitin ligase, downregulates latent membrane protein 2A activity in B-cell signaling, J. Virol., 77, 5529, 10.1128/JVI.77.9.5529-5534.2003
Boase, 2011, Respiratory distress and perinatal lethality in Nedd4-2-deficient mice, Nat. Commun., 2, 287, 10.1038/ncomms1284
Kimura, 2011, Deletion of the ubiquitin ligase Nedd4L in lung epithelia causes cystic fibrosis-like disease, Proc. Natl. Acad. Sci. U. S. A., 108, 3216, 10.1073/pnas.1010334108
Harvey, 2001, The Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel, J. Biol. Chem., 276, 8597, 10.1074/jbc.C000906200
Kamynina, 2001, A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel, FASEB J., 15, 204, 10.1096/fj.00-0191com
Fotia, 2003, The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels, FASEB J., 17, 70, 10.1096/fj.02-0497fje
Lifton, 1995, Genetic determinants of human hypertension, Proc. Natl. Acad. Sci. U. S. A., 92, 8545, 10.1073/pnas.92.19.8545
Shi, 2008, Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2, Am. J. Physiol. Renal Physiol., 295, F462, 10.1152/ajprenal.90300.2008
Ronzaud, 2013, Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension, J. Clin. Invest., 123, 657
Henke, 2004, Regulation of the voltage gated K+ channel Kv1.3 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid inducible kinase SGK1, J. Cell. Physiol., 199, 194, 10.1002/jcp.10430
Fotia, 2004, Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2, J. Biol. Chem., 279, 28930, 10.1074/jbc.M402820200
van Bemmelen, 2004, Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination, Circ. Res., 95, 284, 10.1161/01.RES.0000136816.05109.89
Rougier, 2005, Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins, Am. J. Physiol. Cell Physiol., 288, C692, 10.1152/ajpcell.00460.2004
Ekberg, 2007, Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by ubiquitination. Novel role for Nedd4-2, J. Biol. Chem., 282, 12135, 10.1074/jbc.M609385200
Jespersen, 2007, The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family, Cardiovasc. Res., 74, 64, 10.1016/j.cardiores.2007.01.008
Sorkina, 2006, RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis, J. Neurosci., 26, 8195, 10.1523/JNEUROSCI.1301-06.2006
Van Campenhout, 2011, Dlg3 trafficking and apical tight junction formation is regulated by nedd4 and nedd4-2 e3 ubiquitin ligases, Dev. Cell, 21, 479, 10.1016/j.devcel.2011.08.003
Perry, 1998, The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice, Nat. Genet., 18, 143, 10.1038/ng0298-143
Lohr, 2010, Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease, Am. J. Hum. Genet., 86, 447, 10.1016/j.ajhg.2010.01.028
Gao, 2004, Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch, Science, 306, 271, 10.1126/science.1099414
Venuprasad, 2010, Cbl-b and itch: key regulators of peripheral T-cell tolerance, Cancer Res., 70, 3009, 10.1158/0008-5472.CAN-09-4076
Ahmed, 2011, The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation, Nat. Immunol., 12, 1176, 10.1038/ni.2157
Venuprasad, 2008, The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1, Nat. Immunol., 9, 245, 10.1038/ni1564
Shembade, 2008, The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20, Nat. Immunol., 9, 254, 10.1038/ni1563
You, 2009, PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4, Nat. Immunol., 10, 1300, 10.1038/ni.1815
Rathinam, 2011, The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells, Nat. Immunol., 12, 399, 10.1038/ni.2021
Mossinger, 2012, Phosphatidylinositol 4-kinase IIalpha function at endosomes is regulated by the ubiquitin ligase Itch, EMBO Rep., 13, 1087, 10.1038/embor.2012.164
Rossi, 2005, The ubiquitin-protein ligase Itch regulates p73 stability, EMBO J., 24, 836, 10.1038/sj.emboj.7600444
Rossi, 2006, The E3 ubiquitin ligase Itch controls the protein stability of p63, Proc. Natl. Acad. Sci. U. S. A., 103, 12753, 10.1073/pnas.0603449103
Marchese, 2003, The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4, Dev. Cell, 5, 709, 10.1016/S1534-5807(03)00321-6
Chang, 2006, The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover, Cell, 124, 601, 10.1016/j.cell.2006.01.021
Carrano, 2009, A conserved ubiquitination pathway determines longevity in response to diet restriction, Nature, 460, 396, 10.1038/nature08130
Zhi, 2012, WWP1: a versatile ubiquitin E3 ligase in signaling and diseases, Cell. Mol. Life Sci., 69, 1425, 10.1007/s00018-011-0871-7
Subik, 2012, The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis, Bone, 50, 813, 10.1016/j.bone.2011.12.022
Zhao, 2011, Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1, Stem Cells, 29, 1601, 10.1002/stem.703
Foot, 2008, Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2, Blood, 112, 4268, 10.1182/blood-2008-04-150953
Foot, 2011, Ndfip1-deficient mice have impaired DMT1 regulation and iron homeostasis, Blood, 117, 638, 10.1182/blood-2010-07-295287
Zou, 2011, The E3 ubiquitin ligase Wwp2 regulates craniofacial development through mono-ubiquitylation of Goosecoid, Nat. Cell Biol., 13, 59, 10.1038/ncb2134
Maddika, 2011, WWP2 is an E3 ubiquitin ligase for PTEN, Nat. Cell Biol., 13, 728, 10.1038/ncb2240
Howitt, 2009, Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons, Proc. Natl. Acad. Sci. U. S. A., 106, 15489, 10.1073/pnas.0904880106
Xu, 2004, Wwp2, an E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination, J. Biol. Chem., 279, 23495, 10.1074/jbc.M400516200
Xu, 2009, WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells, Cell Res., 19, 561, 10.1038/cr.2009.31
Nakamura, 2011, Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25, Nat. Commun., 2, 251, 10.1038/ncomms1242
Wang, 2007, NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN, Cell, 128, 129, 10.1016/j.cell.2006.11.039
Trotman, 2007, Ubiquitination regulates PTEN nuclear import and tumor suppression, Cell, 128, 141, 10.1016/j.cell.2006.11.040
Fouladkou, 2008, The ubiquitin ligase Nedd4-1 is dispensable for the regulation of PTEN stability and localization, Proc. Natl. Acad. Sci. U. S. A., 105, 8585, 10.1073/pnas.0803233105
Howitt, 2012, Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia, J. Cell Biol., 196, 29, 10.1083/jcb.201105009
David, 2013, Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression, Biochim. Biophys. Acta, 1835, 119
Massague, 1998, TGF-beta signal transduction, Annu. Rev. Biochem., 67, 753, 10.1146/annurev.biochem.67.1.753
Attisano, 2002, Signal transduction by the TGF-beta superfamily, Science, 296, 1646, 10.1126/science.1071809
Heldin, 1997, TGF-beta signalling from cell membrane to nucleus through SMAD proteins, Nature, 390, 465, 10.1038/37284
Yamashita, 2005, Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation, Cell, 121, 101, 10.1016/j.cell.2005.01.035
Narimatsu, 2009, Regulation of planar cell polarity by Smurf ubiquitin ligases, Cell, 137, 295, 10.1016/j.cell.2009.02.025
Tang, 2011, Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3, EMBO J., 30, 4777, 10.1038/emboj.2011.393
Ramkumar, 2012, Smurf2 regulates the senescence response and suppresses tumorigenesis in mice, Cancer Res., 72, 2714, 10.1158/0008-5472.CAN-11-3773
Blank, 2012, A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20, Nat. Med., 18, 227, 10.1038/nm.2596
Wang, 2003, The 26S proteasome system in the signaling pathways of TGF-beta superfamily, Front. Biosci., 8, d1109, 10.2741/1057
Miyazaki, 2004, NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1, J. Biol. Chem., 279, 11327, 10.1074/jbc.M312389200
Zhang, 2011, Muscle atrophy and motor neuron degeneration in human NEDL1 transgenic mice, J. Biomed. Biotechnol., 2011, 831092, 10.1155/2011/831092
Li, 2008, A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner, Oncogene, 27, 3700, 10.1038/sj.onc.1211032
Shinada, 2011, RNF43 interacts with NEDL1 and regulates p53-mediated transcription, Biochem. Biophys. Res. Commun., 404, 143, 10.1016/j.bbrc.2010.11.082
Li, 2009, WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer, Oncogene, 28, 2948, 10.1038/onc.2009.162
Miyazaki, 2003, A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity, Biochem. Biophys. Res. Commun., 308, 106, 10.1016/S0006-291X(03)01347-0
Garcia-Gonzalo, 2005, The HERC proteins: functional and evolutionary insights, Cell. Mol. Life Sci., 62, 1826, 10.1007/s00018-005-5119-y
Hochrainer, 2005, The human HERC family of ubiquitin ligases: novel members, genomic organization, expression profiling, and evolutionary aspects, Genomics, 85, 153, 10.1016/j.ygeno.2004.10.006
Bischoff, 1991, Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1, Nature, 354, 80, 10.1038/354080a0
Renault, 1998, The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller, Nature, 392, 97, 10.1038/32204
Renault, 2001, Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation, Cell, 105, 245, 10.1016/S0092-8674(01)00315-4
Nemergut, 2001, Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B, Science, 292, 1540, 10.1126/science.292.5521.1540
Rosa, 1996, p619, a giant protein related to the chromosome condensation regulator RCC1, stimulates guanine nucleotide exchange on ARF1 and Rab proteins, EMBO J., 15, 4262, 10.1002/j.1460-2075.1996.tb00801.x
Chong-Kopera, 2006, TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase, J. Biol. Chem., 281, 8313, 10.1074/jbc.C500451200
Diouf, 2011, Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells, Nat. Med., 17, 1298, 10.1038/nm.2430
Mashimo, 2009, Progressive Purkinje cell degeneration in tambaleante mutant mice is a consequence of a missense mutation in HERC1 E3 ubiquitin ligase, PLoS Genet., 5, e1000784, 10.1371/journal.pgen.1000784
Lehman, 1998, A very large protein with diverse functional motifs is deficient in rjs (runty, jerky, sterile) mice, Proc. Natl. Acad. Sci. U. S. A., 95, 9436, 10.1073/pnas.95.16.9436
Walkowicz, 1999, Molecular characterization of radiation- and chemically induced mutations associated with neuromuscular tremors, runting, juvenile lethality, and sperm defects in jdf2 mice, Mamm. Genome, 10, 870, 10.1007/s003359901106
Bekker-Jensen, 2010, HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes, Nat. Cell Biol., 12, 80, 10.1038/ncb2008
Kang, 2010, Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein, Nucleic Acids Res., 39, 3176, 10.1093/nar/gkq1318
Wu, 2010, HERC2 is an E3 ligase that targets BRCA1 for degradation, Cancer Res., 70, 6384, 10.1158/0008-5472.CAN-10-1304
Danielsen, 2012, DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger, J. Cell Biol., 197, 179, 10.1083/jcb.201106152
Oestergaard, 2012, RNF8 and RNF168 but not HERC2 are required for DNA damage-induced ubiquitylation in chicken DT40 cells, DNA Repair (Amst), 11, 892, 10.1016/j.dnarep.2012.08.005
Izawa, 2011, HERC2 Interacts with Claspin and regulates DNA origin firing and replication fork progression, Cancer Res., 71, 5621, 10.1158/0008-5472.CAN-11-0385
Nicholls, 2001, Genome organization, function, and imprinting in Prader–Willi and Angelman syndromes, Annu. Rev. Genomics Hum. Genet., 2, 153, 10.1146/annurev.genom.2.1.153
Chamberlain, 2010, Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13, Neurobiol. Dis., 39, 13, 10.1016/j.nbd.2010.03.011
Puffenberger, 2012, A homozygous missense mutation in HERC2 associated with global developmental delay and autism spectrum disorder, Hum. Mutat., 33, 1639, 10.1002/humu.22237
Harlalka, 2013, Mutation of HERC2 causes developmental delay with Angelman-like features, J. Med. Genet., 50, 65, 10.1136/jmedgenet-2012-101367
Kuhnle, 2011, Physical and functional interaction of the HECT ubiquitin-protein ligases E6AP and HERC2, J. Biol. Chem., 286, 19410, 10.1074/jbc.M110.205211
Dagli, 2012, Molecular and clinical aspects of Angelman syndrome, Mol. Syndromol., 2, 100, 10.1159/000328837
Clayton-Smith, 2003, Angelman syndrome: a review of the clinical and genetic aspects, J. Med. Genet., 40, 87, 10.1136/jmg.40.2.87
Sturm, 2009, Genetics of human iris colour and patterns, Pigment Cell Melanoma Res., 22, 544, 10.1111/j.1755-148X.2009.00606.x
White, 2011, Genotype–phenotype associations and human eye color, J. Hum. Genet., 56, 5, 10.1038/jhg.2010.126
Cruz, 2001, HERC3 binding to and regulation by ubiquitin, FEBS Lett., 488, 74, 10.1016/S0014-5793(00)02371-1
Hochrainer, 2008, Highly homologous HERC proteins localize to endosomes and exhibit specific interactions with hPLIC and Nm23B, Cell. Mol. Life Sci., 65, 2105, 10.1007/s00018-008-8148-5
Mitsui, 1999, A novel human gene encoding HECT domain and RCC1-like repeats interacts with cyclins and is potentially regulated by the tumor suppressor proteins, Biochem. Biophys. Res. Commun., 266, 115, 10.1006/bbrc.1999.1777
Kroismayr, 2004, HERC5, a HECT E3 ubiquitin ligase tightly regulated in LPS activated endothelial cells, J. Cell Sci., 117, 4749, 10.1242/jcs.01338
Dastur, 2006, Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells, J. Biol. Chem., 281, 4334, 10.1074/jbc.M512830200
Wong, 2006, HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets, Proc. Natl. Acad. Sci. U. S. A., 103, 10735, 10.1073/pnas.0600397103
Jeon, 2010, ISG15 and immune diseases, Biochim. Biophys. Acta, 1802, 485, 10.1016/j.bbadis.2010.02.006
Oudshoorn, 2012, HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells, PLoS One, 7, e29870, 10.1371/journal.pone.0029870
Ketscher, 2012, mHERC6 is the essential ISG15 E3 ligase in the murine system, Biochem. Biophys. Res. Commun., 417, 135, 10.1016/j.bbrc.2011.11.071
Zhao, 2010, ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells, Proc. Natl. Acad. Sci. U. S. A., 107, 2253, 10.1073/pnas.0909144107
Tang, 2010, Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein, J. Immunol., 184, 5777, 10.4049/jimmunol.0903588
Durfee, 2010, The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15, Mol. Cell, 38, 722, 10.1016/j.molcel.2010.05.002
Beaudenon, 2008, HPV E6, E6AP and cervical cancer, BMC Biochem., 9, S4, 10.1186/1471-2091-9-S1-S4
Kishino, 1997, UBE3A/E6-AP mutations cause Angelman syndrome, Nat. Genet., 15, 70, 10.1038/ng0197-70
Matsuura, 1997, De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome, Nat. Genet., 15, 74, 10.1038/ng0197-74
Glessner, 2009, Autism genome-wide copy number variation reveals ubiquitin and neuronal genes, Nature, 459, 569, 10.1038/nature07953
Hogart, 2010, The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13, Neurobiol. Dis., 38, 181, 10.1016/j.nbd.2008.08.011
Huibregtse, 1993, Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53, Mol. Cell. Biol., 13, 775
Shai, 2010, E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice, Cancer Res., 70, 5064, 10.1158/0008-5472.CAN-09-3307
Scheffner, 2003, Human papillomavirus-induced carcinogenesis and the ubiquitin–proteasome system, Semin. Cancer Biol., 13, 59, 10.1016/S1044-579X(02)00100-1
Mantovani, 2001, The human papillomavirus E6 protein and its contribution to malignant progression, Oncogene, 20, 7874, 10.1038/sj.onc.1204869
Scheffner, 1993, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53, Cell, 75, 495, 10.1016/0092-8674(93)90384-3
Malzac, 1998, Mutation analysis of UBE3A in Angelman syndrome patients, Am. J. Hum. Genet., 62, 1353, 10.1086/301877
Fang, 1999, The spectrum of mutations in UBE3A causing Angelman syndrome, Hum. Mol. Genet., 8, 129, 10.1093/hmg/8.1.129
Albrecht, 1997, Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons, Nat. Genet., 17, 75, 10.1038/ng0997-75
Cooper, 2004, Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein, J. Biol. Chem., 279, 41208, 10.1074/jbc.M401302200
Kumar, 1999, Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination, J. Biol. Chem., 274, 18785, 10.1074/jbc.274.26.18785
Mani, 2006, E6AP mediates regulated proteasomal degradation of the nuclear receptor coactivator amplified in breast cancer 1 in immortalized cells, Cancer Res., 66, 8680, 10.1158/0008-5472.CAN-06-0557
Louria-Hayon, 2009, E6AP promotes the degradation of the PML tumor suppressor, Cell Death Differ., 16, 1156, 10.1038/cdd.2009.31
Mulherkar, 2009, The ubiquitin ligase E6-AP promotes degradation of alpha-synuclein, J. Neurochem., 110, 1955, 10.1111/j.1471-4159.2009.06293.x
Zaaroor-Regev, 2010, Regulation of the polycomb protein Ring1B by self-ubiquitination or by E6-AP may have implications to the pathogenesis of Angelman syndrome, Proc. Natl. Acad. Sci. U. S. A., 107, 6788, 10.1073/pnas.1003108107
Greer, 2010, The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc, Cell, 140, 704, 10.1016/j.cell.2010.01.026
Jiang, 1998, Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation, Neuron, 21, 799, 10.1016/S0896-6273(00)80596-6
Miura, 2002, Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice, Neurobiol. Dis., 9, 149, 10.1006/nbdi.2001.0463
Yashiro, 2009, Ube3a is required for experience-dependent maturation of the neocortex, Nat. Neurosci., 12, 777, 10.1038/nn.2327
Tzingounis, 2006, Arc/Arg3.1: linking gene expression to synaptic plasticity and memory, Neuron, 52, 403, 10.1016/j.neuron.2006.10.016
Shepherd, 2011, New views of Arc, a master regulator of synaptic plasticity, Nat. Neurosci., 14, 279, 10.1038/nn.2708
Smith, 2011, Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice, Sci. Transl. Med., 3, 103ra197, 10.1126/scitranslmed.3002627
Salvat, 2004, The −4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases, J. Biol. Chem., 279, 18935, 10.1074/jbc.M312201200
Nawaz, 1999, The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily, Mol. Cell. Biol., 19, 1182, 10.1128/MCB.19.2.1182
Ramamoorthy, 2008, E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors, Nucl. Recept. Signal., 6, e006, 10.1621/nrs.06006
Gu, 1995, UREB1, a tyrosine phosphorylated nuclear protein, inhibits p53 transactivation, Oncogene, 11, 2175
Chen, 2005, ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor, Cell, 121, 1071, 10.1016/j.cell.2005.03.037
Zhong, 2005, Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis, Cell, 121, 1085, 10.1016/j.cell.2005.06.009
Liu, 2005, Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones, Mol. Cell. Biol., 25, 2819, 10.1128/MCB.25.7.2819-2831.2005
Adhikary, 2005, The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation, Cell, 123, 409, 10.1016/j.cell.2005.08.016
Zhao, 2008, The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein, Nat. Cell Biol., 10, 643, 10.1038/ncb1727
Hall, 2007, Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage, Mol. Biol. Cell, 18, 3340, 10.1091/mbc.e07-02-0173
Herold, 2008, Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1, EMBO J., 27, 2851, 10.1038/emboj.2008.200
Yang, 2010, E3 ubiquitin ligase Mule ubiquitinates Miz1 and is required for TNFalpha-induced JNK activation, Proc. Natl. Acad. Sci. U. S. A., 107, 13444, 10.1073/pnas.0913690107
Yin, 2010, E3 ligases Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb alpha, Proc. Natl. Acad. Sci. U. S. A., 107, 11614, 10.1073/pnas.1000438107
Zhang, 2011, Mule determines the apoptotic response to HDAC inhibitors by targeted ubiquitination and destruction of HDAC2, Genes Dev., 25, 2610, 10.1101/gad.170605.111
Parsons, 2009, Ubiquitin ligase ARF-BP1/Mule modulates base excision repair, EMBO J., 28, 3207, 10.1038/emboj.2009.243
Markkanen, 2012, Regulation of oxidative DNA damage repair by DNA polymerase lambda and MutYH by cross-talk of phosphorylation and ubiquitination, Proc. Natl. Acad. Sci. U. S. A., 109, 437, 10.1073/pnas.1110449109
Leboucher, 2012, Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis, Mol. Cell, 47, 547, 10.1016/j.molcel.2012.05.041
Chen, 2006, ARF-BP1 as a potential therapeutic target, Br. J. Cancer, 94, 1555, 10.1038/sj.bjc.6603119
Confalonieri, 2009, Alterations of ubiquitin ligases in human cancer and their association with the natural history of the tumor, Oncogene, 28, 2959, 10.1038/onc.2009.156
Khoronenkova, 2011, The emerging role of Mule and ARF in the regulation of base excision repair, FEBS Lett., 585, 2831, 10.1016/j.febslet.2011.06.015
Zhao, 2009, The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain, Dev. Cell, 17, 210, 10.1016/j.devcel.2009.07.009
Brooks, 2011, p53 regulation by ubiquitin, FEBS Lett., 585, 2803, 10.1016/j.febslet.2011.05.022
Hao, 2012, The E3 ubiquitin ligase Mule acts through the ATM–p53 axis to maintain B lymphocyte homeostasis, J. Exp. Med., 209, 173, 10.1084/jem.20111363
Kon, 2012, Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in mice, J. Biol. Chem., 287, 5102, 10.1074/jbc.M111.322867
Callaghan, 1998, Identification of a human HECT family protein with homology to the Drosophila tumor suppressor gene hyperplastic discs, Oncogene, 17, 3479, 10.1038/sj.onc.1202249
Deo, 2001, X-ray structure of the human hyperplastic discs protein: an ortholog of the C-terminal domain of poly(A)-binding protein, Proc. Natl. Acad. Sci. U. S. A., 98, 4414, 10.1073/pnas.071552198
Kozlov, 2004, Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase, EMBO J., 23, 272, 10.1038/sj.emboj.7600048
Clancy, 2003, EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer, Oncogene, 22, 5070, 10.1038/sj.onc.1206775
Fuja, 2004, Somatic mutations and altered expression of the candidate tumor suppressors CSNK1 epsilon, DLG1, and EDD/hHYD in mammary ductal carcinoma, Cancer Res., 64, 942, 10.1158/0008-5472.CAN-03-2100
Honda, 2002, Cooperation of HECT-domain ubiquitin ligase hHYD and DNA topoisomerase II-binding protein for DNA damage response, J. Biol. Chem., 277, 3599, 10.1074/jbc.M104347200
Yoshida, 2006, Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2, EMBO J., 25, 1934, 10.1038/sj.emboj.7601079
Hay-Koren, 2010, The EDD E3 ubiquitin ligase ubiquitinates and up-regulates beta-catenin, Mol. Biol. Cell, 22, 399, 10.1091/mbc.e10-05-0440
Maddika, 2009, Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase, Nat. Cell Biol., 11, 409, 10.1038/ncb1848
Cojocaru, 2011, Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B, J. Biol. Chem., 286, 5012, 10.1074/jbc.M110.176628
Jiang, 2011, Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase, Mol. Cell, 43, 33, 10.1016/j.molcel.2011.04.028
Gudjonsson, 2012, TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes, Cell, 150, 697, 10.1016/j.cell.2012.06.039
Ohshima, 2007, Putative tumor suppressor EDD interacts with and up-regulates APC, Genes Cells, 12, 1339, 10.1111/j.1365-2443.2007.01138.x
Henderson, 2006, EDD mediates DNA damage-induced activation of CHK2, J. Biol. Chem., 281, 39990, 10.1074/jbc.M602818200
Henderson, 2002, EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response, J. Biol. Chem., 277, 26468, 10.1074/jbc.M203527200
Tomaic, 2011, Regulation of the human papillomavirus type 18 E6/E6AP ubiquitin ligase complex by the HECT domain-containing protein EDD, J. Virol., 85, 3120, 10.1128/JVI.02004-10
Su, 2011, Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing, Mol. Cell, 43, 97, 10.1016/j.molcel.2011.06.013
Chen, 2010, Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses, Nature, 464, 624, 10.1038/nature08820
Chen, 2010, Reactivating the ARF–p53 axis in AML cells by targeting ULF, Cell Cycle, 9, 2946, 10.4161/cc.9.15.12355
Chio, 2012, Mak, TRADD contributes to tumour suppression by regulating ULF-dependent p19Arf ubiquitylation, Nat. Cell Biol., 14, 625, 10.1038/ncb2496
Anglesio, 2004, Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms' tumor versus normal kidney, Hum. Mol. Genet., 13, 2061, 10.1093/hmg/ddh215
Zhang, 2007, The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers, Nat. Med., 13, 1060, 10.1038/nm1621
Slade, 2011, Constitutional translocation breakpoint mapping by genome-wide paired-end sequencing identifies HACE1 as a putative Wilms tumour susceptibility gene, J. Med. Genet., 47, 342, 10.1136/jmg.2009.072983
Diskin, 2012, Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma, Nat. Genet., 44, 1126, 10.1038/ng.2387
Torrino, 2011, The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1, Dev. Cell, 21, 959, 10.1016/j.devcel.2011.08.015
Castillo-Lluva, 2013, The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation, Oncogene, 32, 1735, 10.1038/onc.2012.189
Tang, 2011, The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle, Nat. Commun., 2, 501, 10.1038/ncomms1509