Malware clustering using suffix trees
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ackermann, W.: Zum hilbertschen aufbau der reellen zahlen. Mathematische Annalen 99(1), 118–133 (1928)
AV-Test: Malware statistics (2014). http://www.av-test.org/en/statistics/malware/
Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: NDSS 9, 8–11 (2009). Citeseer
Bilar, D.: Opcodes as predictor for malware. Int. J. Electr. Secur. Digit. Forensics 1(2), 156–168 (2007)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to algorithms, vol. 2. MIT press, Cambridge (2001)
Gower, J.C., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Applied statistics pp. 54–64 (1969)
Gusfield, D.: Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press, Cambridge (1997)
Hu, X., Shin, K.G., Bhatkar, S., Griffin, K.: Mutantx-s: Scalable malware clustering based on static features. In: USENIX Annual Technical Conference, pp. 187–198 (2013)
Jana, P., Naik, A.: An efficient minimum spanning tree based clustering algorithm. In: ICM2CS 2009. Proceeding of International Conference on Methods and Models in Computer Science. pp. 1–5. IEEE Press, New York (2009)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. In: Soviet physics doklady, vol. 10, p. 707 (1966)
Manber, U., et al.: Finding similar files in a large file system. Usenix Winter 94, 1–10 (1994)
Oprisa, C., Checiches, M., Nandrean, A.: Locality-sensitive hashing optimizations for fast malware clustering. In: IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE Press, New York (2014)
Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of http-based malware and signature generation using malicious network traces. In: NSDI, pp. 391–404 (2010)
Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., Elovici, Y.: Detecting unknown malicious code by applying classification techniques on opcode patterns. Secur. Inf. 1(1), 1–22 (2012)
Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973)
Ször, P., Ferrie, P.: Hunting for metamorphic. In: Virus Bulletin Conference (2001)
Vatamanu, C., Gavriluţ, D., Benchea, R.: A practical approach on clustering malicious pdf documents. J. Comput. Virol. 8(4), 151–163 (2012)
Weiner, P.: Linear pattern matching algorithms. In: SWAT’08. IEEE Conference Record of 14th Annual Symposium on Switching and Automata Theory, pp. 1–11. IEEE Press, New York (1973)
Xu, Y., Olman, V., Xu, D.: Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics 18(4), 536–545 (2002)
Zhang, Y.C., Che, M., Ma, J.: Analysis of the longest common substring algorithm. Comput. Simul. 12, 025 (2007)