Nắn lại xương cẳng tay ở trẻ em: Nguyên tắc và kỹ thuật điều trị

Current Reviews in Musculoskeletal Medicine - Tập 15 - Trang 427-437 - 2022
T. Peter Li1, Adi Wollstein1, Samir Sabharwal1, Suresh K. Nayar1, Sanjeev Sabharwal2
1Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
2Department of Orthopaedic Surgery, University of California San Francisco, Benioff Children’s Hospital, Oakland, USA

Tóm tắt

Biến chứng nắn lại bất thường xương cẳng tay ở trẻ em là một tình trạng hiếm gặp nhưng có thể gây khuyết tật cho trẻ em và thanh thiếu niên. Chúng tôi trình bày đánh giá trước phẫu thuật, bao gồm cả hình ảnh, và thảo luận về những chỉ định phẫu thuật cũng như các phương pháp hiện đại để điều trị những bệnh nhân như vậy, kèm theo một trường hợp minh họa. Trong khi những tiến bộ trong mô phỏng ba chiều (3D), lập mô hình, và dụng cụ cá nhân hóa đã mở rộng khả năng phẫu thuật, ảnh hưởng của chúng đối với kết quả lâu dài so với các phương pháp truyền thống vẫn chưa biết. Kết quả thành công sau khi sửa chữa phẫu thuật tình trạng nắn lại xương bất thường sau gãy xương cẳng tay hai xương có thể đạt được qua việc lựa chọn bệnh nhân cẩn thận, chỉ định phù hợp và thực hiện phẫu thuật được lên kế hoạch kỹ lưỡng.

Từ khóa

#biến chứng xương cẳng tay #gãy xương #phẫu thuật trẻ em #nắn lại xương #kỹ thuật y tế

Tài liệu tham khảo

Fuller DJ, McCullough CJ. Malunited fractures of the forearm in children. J Bone Joint Surg Series B. 1982;64(3):364–7. Thomas EM, Tuson KW, Browne PS. Fractures of the radius and ulna in children. Injury. 1975;7(2):120–4. Schmittenbecher PP. State-of-the-art treatment of forearm shaft fractures. Injury. 2005;36(1 SUPPL):A25–34. Price CT, Scott DS, Kurzner ME, Flynn JC. Malunited forearm fractures in children. J Pediatr Orthop. 1990;10(6):705–12. Larsen E, Vittas D, Torp-Pedersen S. Remodeling of angulated distal forearm fractures in children. Clin Orthop Relat Res. 1988;237:190–5. Johari AN, Sinha M. Remodeling of forearm fractures in children. J Pediatr Orthop B. 1999;8(2):84–7. Carey PJ, Alburger PD, Betz RR, Clancy M, Steel HH. Both-bone forearm fractures in children. Orthopedics. 1992;15(9):1015–9. Daruwalla JS. A study of radioulnar movements following fractures of the forearm in children. Clin Orthop Relat Res. 1979. Nilsson BE, Obrant K. The range of motion following fracture of the shaft of the forearm in children. Acta Orthop Scand. 1977;48(6):600–2. Blackburn N, Ziv I, Rang M. Correction of the malunited forearm fracture. Clin Orthop Relat Res. 1984;188:54–7. Holdsworth BJ, Sloan JP. Proximal forearm fractures in children: residual disability. Injury. 1982;14(2):174–9. Matthews LS, et al. The effect on supination-pronation of angular malalignment of fractures of both bones of the forearm. J Bone Joint Surg Am. 1982;64(1):14–7. Trousdale RT, Linscheid RL. Operative treatment of malunited fractures of the forearm. J Bone Joint Surg Am. 1995;77(6):894–902. Nagy L, Jankauskas L, Dumont CE. Correction of forearm malunion guided by the preoperative complaint. Clin Orthop Relat Res. 2008;466(6):1419–28. Price CT. Acceptable alignment of forearm fractures in children: Open reduction indications. J Pediatr Orthop. 2010;30(SUPPL. 2):82–4. Colaris JW, Allema JH, Reijman M, Biter LU, de Vries MR, van de Ven CP, Bloem RM, Verhaar JAN. Risk factors for the displacement of fractures of both bones of the forearm in children. Bone Joint J. 2013;95-B(5):689–93. Bowman EN, Mehlman CT, Lindsell CJ, Tamai J. Nonoperative treatment of both-bone forearm shaft fractures in children: Predictors of early radiographic failure. J Pediatr Orthop. 2011;31(1):23–32. Franklin CC, Wren T, Ferkel E, Arkader A. Predictors of conversion from conservative to operative treatment of pediatric forearm fractures. J Pediatr Orthop B. 2014;23(2):150–4. Price CT, Knapp DR. Osteotomy for malunited forearm shaft fractures in children. J Pediatr Orthop. 2006;26(2):193–6. van Geenen RCI, Besselaar PP. Outcome after corrective osteotomy for malunited fractures of the forearm sustained in childhood. J Bone Joint Surg Series B. 2007;89(2):236–9. • Saravi B, et al. Corrective osteotomy of upper extremity malunions using three-dimensional planning and patient-specific surgical guides: recent advances and perspectives. Front Surg. 2021;8(February):615026 This is the most recent comprehensive review of the use of patient-specific surgical guide on various kinds of upper extremity malunions. Three cases of forearm fracture malunion were presented, one of which was a skeletally mature pediatric patient. Bauer DE, Zimmermann S, Aichmair A, Hingsammer A, Schweizer A, Nagy L, Fürnstahl P. Conventional Versus computer-assisted corrective osteotomy of the forearm: a retrospective analysis of 56 consecutive cases. J Hand Surg. 2017;42(6):447–55. McGinley JC, D'addessi L, Sadeghipour K, Kozin SH. Mechanics of the antebrachial interosseous membrane: response to shearing forces. J Hand Surg [Am]. 2001;26(4):733–41. Pace JL. Pediatric and adolescent forearm fractures: current controversies and treatment recommendations. J Am Acad Orthop Surg. 2016;24(11):780–8. Noonan KJ, Price CT. Forearm and distal radius fractures in children. J Am Acad Orthop Surg. 1998;6(3):146–56. Kasten P, Krefft M, Hesselbach J, Weinberg AM. How does torsional deformity of the radial shaft influence the rotation of the forearm? A biomechanical study. J Orthop Trauma. 2003;17(1):57–60. Younger AS, et al. Accurate prediction of outcome after pediatric forearm fracture. J Pediatr Orthop. 2010;14(2):200–6. Kay S, Smith C, Oppenheim WL. Both-bone midshaft forearm fractures in children. J Pediatr Orthop. 1986;6(3):306–10. Vittas D, Larsen E, Torp-Pedersen S. Angular remodeling of midshaft forearm fractures in children. Clin Orthop Relat Res. 1991;265:261–4. Christensen JB, Adams JP, Cho KO, Miller L. A study of the interosseous distance between the radius and ulna during rotation of the forearm. Anat Rec. 1968;160(2):261–71. Morrey BF, Askew LJ, Chao EY. A biomechanical study of normal functional elbow motion. J Bone Joint Surg Am. 1981;63(6):872–7. Voto SJ, Weiner DS, Leighley B. Redisplacement after closed reduction of forearm fractures in children. J Pediatr Orthop. 1990;10(1):79–84. Roth KC, Walenkamp MMJ, van Geenen RCI, Reijman M, Verhaar JAN, Colaris JW. Factors determining outcome of corrective osteotomy for malunited paediatric forearm fractures: a systematic review and meta-analysis. J Hand Surg Eur Vol. 2017;42(8):810–6. Bindra RR, et al. Quantification of the radial torsion angle with computerized tomography in cadaver specimens. J Bone Joint Surg Am. 1997;79(6):833–7. Hoffa A. Lehrbuch der orthopädischen Chirurgie. 3rd ed. Stuttgart: Ferdinand Enke; 1898. p. 858. Blount WP. Osteoclasis of the upper extremity in children. Acta Orthop Scand. 1962;32:374–82. https://doi.org/10.3109/17453676208989596. Frame M, Huntley JS. Rapid prototyping in orthopaedic surgery: a user’s guide. Sci World J. 2012;2012:1–7. Miyake J, Murase T, Oka K, Moritomo H, Sugamoto K, Yoshikawa H. Computer-assisted corrective osteotomy for malunited diaphyseal forearm fractures. J Bone Joint Surg Am. 2012;94(20):e150–0. Jupiter JB, Ruder J, Roth DA. Computer-generated bone models in the planning of osteotomy of multidirectional distal radius malunions. J Hand Surg. 1992;17(3):406–15. Oka K, et al. Corrective osteotomy using customized hydroxyapatite implants prepared by preoperative computer simulation. Int J Med Robot. 2010;6(2):186–93. Byrne AM, et al. Corrective osteotomy for malunited diaphyseal forearm fractures using preoperative 3-dimensional planning and patient-specific surgical guides and implants. J Hand Surg. 2017;(10):836.e1–836.e12. • Kataoka T, Oka K, Murase T. Rotational corrective osteotomy for malunited distal diaphyseal radius fractures in children and adolescents. J Hand Surg. 2018;43(3):286.e1–8 This is the most recent case seriers of four skeletally immature patients who underwent computer-planned corrective osteotomy for malunited distal diaphyseal radius fracture using patient-specific instrumentation. This is one of the first case seriers focusing on the outcome and the cost of using patient specific instrumentation on pediatric patients. Walenkamp MMJ, de Muinck Keizer RJO, Dobbe JGG, Streekstra GJ, Goslings JC, Kloen P, Strackee SD, Schep NWL. Computer-assisted 3D planned corrective osteotomies in eight malunited radius fractures. Strateg Trauma Limb Reconstr. 2015;10(2):109–16. Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K. Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Series A. 2008;90(11):2375–89. Bauer AS, Storelli DAR, Sibbel SE, McCarroll HR, Lattanza LL. Preoperative computer simulation and patient-specific guides are safe and effective to correct forearm deformity in children. J Pediatr Orthop. 2017;37(7):504–10. Vlachopoulos L, Schweizer A, Graf M, Nagy L, Fürnstahl P. Three-dimensional postoperative accuracy of extra-articular forearm osteotomies using CT-scan based patient-specific surgical guides. BMC Musculoskelet Disord. 2015;16(1):336–6. Kataoka T, Oka K, Miyake J, Omori S, Tanaka H, Murase T. 3-Dimensional prebent plate fixation in corrective osteotomy of malunited upper extremity fractures using a real-sized plastic bone model prepared by preoperative computer simulation. J Hand Surg. 2013;38(5):909–19. Kanj WW, Gunderson MA, Carrigan RB, Sankar WN. Acute compartment syndrome of the upper extremity in children: diagnosis, management, and outcomes. J Child Orthop. 2013;7(3):225–33.