Making continental crust: The sanukitoid connection

Science Bulletin - Tập 53 Số 11 - Trang 1620-1633 - 2008
Yoshiyuki Tatsumi1
1Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Christensen N I, Mooney W D. Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res, 1995, 100: 9761–9788

Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 1995, 33: 267–309

Taylor S R, McLennan S M. The geochemical evolution of the continental crust. Rev Geophys, 1995, 33: 241–265

Nicholls I A, Ringwood A E. Effect of water on olivine stability in tholeiites and the production of silica saturated magmas in the island arc environment. J Geol, 1973, 81: 285–300

Sekine T, Wyllie P J. Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol, 1982, 79: 368–374

Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 1991, 51: 1–25

Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contrib Mineral Petrol, 1994, 115: 369–383

Martin H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 1986, 14: 753–756

Drummond M S, Defant M J. A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res B-Solid Earth Planets, 1990, 95: 21503–21521

Kelemen P B. Genesis of high Mg andesites and the continental crust. Contrib Mineral Petrol, 1995, 120: 1–19

Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite. Nature, 2003, 425: 605–609

Shirey S B, Hanson G N. Mantle-derived Archaean monzodiorites and trachyandesites. Nature, 1984, 310: 222–224

Samsonov A V, Bogina M M, Bibikova E V, et al. The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: Implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield. Lithos, 2005, 79: 83–106

Moyen J F, Martin H, Jayananda M, et al. Late Archaean granites; a typology based on the Dharwar Craton, India. Precambrian Res, 2003, 127: 103–123

Smithies R H, Champion D C. Late Archaean felsic alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: A result of lower crustal delamination? J Geol Soc London, 1999, 156: 561–576

Koto B. On the volcanoes of Japan (V). J Geol Soc Tokyo, 1916, 23: 95–127

Weinschenk E. Beiträge zur Petrographie Japans. Neues Jahrb Min Geol Paläont, 1891, 7: 133–151

Tatsumi Y, Ishizaka K. Existence of andesitic primary magma: An example from Southwest Japan. Earth Planet Sci Lett, 1981, 53: 124–130

Tatsumi Y. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: Analogy to Archean Magmatism and Continental Crust Formation? Annu Rev Earth Planet Sci, 2006, 34: 467–499

Uto K, Anno K, Sudo M, et al. K-Ar ages for the Middle Miocene Muro volcanic rock, Southwest Japan. Bull Volcanol Soc Japan, 1996, 41: 257–261

Sumii T. K-Ar ages of the Miocene Setouchi-volcanic rocks in the western Setouchi Island Sea region, Southwest Japan. J Geol Soc Japan, 2000, 106: 609–619

Shinjoe H, Sumii T. Catalog of the Middle Miocene igneous rocks in the forearc region of the Southwest Japan: (2) Shikoku district. Memoir of Human and Natural Sciences, Tokyo Keizai Univ, 2001, 112: 51–91

Tatsumi Y, Ishikawa N, Anno K, et al. Tectonic setting of high-Mg andesite magmatism in the SW Japan Arc: K-Ar chronology of the Setouchi volcanic belt. Geophys J Int, 2001, 144: 625–631

Tatsumi Y, Shukuno H, Sato K, et al. The Petrology and Geochemistry of High-Mg Andesites at the Western Tip of the Setouchi volcanic belt, SW Japan. J Petrol, 2003, 44: 1561–1578

Sugihara T, Fujimaki H. K-Ar ages for the Setouchi volcanic rocks in Shitara district, central Japan. Jpn Mag Mineral Petrol Sci, 2002, 31: 15–24

Shibata K. Contemporaneity of Tertiary granites in the outer zone of Southwest Japan. B Geol Surv Jpn, 1978, 29: 51–54

Nakanishi I. Precursors to ScS phases and dipping interface in the upper mantle beneath southwestern Japan. Tectonophys, 1980, 69: 1–35

Syracuse E M, Abers G A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst, 2006, 7: Q05017, doi:10.1029/2005GC001045

Tatsumi Y, Eggins S. Subduction Zone Magmatism. Boston: Blackwell Science, 1995

England P, Engdahl R, Thatcher W. Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int, 2004, 156: 377–408

Tatsumi Y. Formation of the volcanic front in subduction zones. Geophys Res Lett, 1986, 13: 717–720

Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res, 1989, 94: 4697–4707

Okino K, Shimakawa Y, Nagaoka S. Evolution of the Shikoku Basin. J Geomag Geoelect, 1994, 46: 463–479

Okino K, Kasuga S, Ohara Y. A new scenario of the Parece Vela Basin genesis. Mar Geophy Res, 1998, 20: 21–40

Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins. Geophys Res Lett, 1999, 26: 2287–2290

Furukawa Y, Tatsumi Y. Melting of a subducting slab and production of high-Mg andesite magmas: Unusual magmatism in SW Japan at 13–15 Ma. Geophys Res Lett, 1999, 26: 2271–2274

Tamaki K. Ocean Drilling Program and back-arc basin tectonics: Tyrrhenian Sea, Sulu/Celebes seas, Sumisu Rift, Japan Sea and Lau Basin. International Geological Congress, Abstracts-Congres, 1992. 20

Tamaki K. Opening tectonics of the Japan Sea. In: Taylor B, ed. Backarc Basins: Tectonics and Magmatism. New York: Plenum Press, 1995. 407–420

Otofuji Y-i, Matsuda T, Nohda S. Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japan-rifting Process of the Japan Arc. Earth Planet Sci Lett, 1985, 75: 267–277

Tatsumi Y, Otofuji Y-i, Matsuda T, et al. Opening of the Sea of Japan back-arc basin by asthenospheric injection. Tectonophys, 1989, 166: 317–329

Tatsumi Y, Furukawa Y, Yamashita S. Thermal and geochemical evolution of the mantle wedge in the NE Japan arc: I. Contribution from experimental petrology. J Geophys Res, 1994, 99: 22275–22283

Stern R J. When and how did plate tectonics begin? Theoretical and empirical considerations. Chin Sci Bull, 2007, 52(5): 578–591

Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985

McCulloch M T, Bennett V C. Progressive growth of the Earth’s continental crust and depleted mantle: Geochemical constraints. Geochim Cosmochim Acta, 1994, 59: 4717–4738

Roeder P L, Emslie R F. Olivine-liquid equilibrium. Contrib Mineral Petrol, 1970, 29: 275–289

Kikuchi Y. On pyroxenic components in certain volcanic rocks from Bonin Island. J Coll Sci Imp Univ Japan, 1889, 3: 67–89

Yogodzinski G M, Volynets O N, Koloskov A V, et al. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians. J Petrol, 1994, 35: 163–204

Kay R W. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res, 1978, 4: 117–132

Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662–665

Castillo P R. An overview of adakite petrogenesis. Chin Sci Bull, 2006, 51(3): 257–268

O’Hara M J. Primary magmas and the origin of basalts. Scottish J Geol, 1965, 1: 19–40

Kushiro I. The system forsterite-diopside-silica with and without water at high pressures. American J Sci, 1969, 267-A: 269–294

Mysen B O, Boettcher A L. Melting of a hydrous mantle: I, Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol, 1975, 16: 520–548

Hirose K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 1997, 25: 42–44

Tatsumi Y. Origin of high-magnesian andesites in the Setouchi volcanic belt, Southwest Japan: II, Melting phase relations at high pressures. Earth Planet Sci Lett, 1982, 60: 305–317

Tatsumi Y. Melting experiments on a high-magnesian andesite. Earth Planet Sci Lett, 1981, 54: 357–365

Umino S, Kushiro I. Experimental studies on boninite petrogenesis. In: Crawford A J, ed. Boninites. London: Unwin Hyman, 1989. 89–111

Crawford A J, Falloon T J, Green D H. Classification, petrogenesis and tectonic setting of boninites. In: Crawford A J, ed. Boninites and Related Rocks. London: Unwin Hyman, 1989. 1–49

Tatsumi Y, Maruyama S. Boninites and high-Mg andesites: tectonics and petrogenesis. In: Crawford A J, ed. Boninites. London: Unwin Hyman, 1989. 50–71

Tatsumi Y, Hanyu T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: Towards a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst, 2003, 4: 1081, doi: 10.1029/2003GC000530

Wood D, Joron J L, Marsh N G, et al. Major and trace element variations in basalts from the north Philippine Sea drilled during DSDP Leg 58: A comparative study of back-arc basin basalts with lava series from Japan and mid-ocean ridges. In: Klein G, Kobayashi K, eds. Initial Reports of the Deep Sea Drilling Project: U.S. Government Printhing Office 58, 1979. 873–894

Hickey-Vargas R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes. J Geophys Res, 1998, 103: 20963–20980

Shimoda G, Tatsumi Y, Nohda S, et al. Setouchi high-Mg andesites revisited: Geochemical evidence for melting of subducting sediments. Earth Planet Sci Lett, 1998, 160: 479–492

Kogiso T, Tatsumi Y, Shimoda G, et al. High-ì(HIMU) ocean island basalts in southern Polynesia: New evidence for whole mantle scale recycling of subducted oceanic crust. J Geophys Res B-Solid Earth Planets, 1997, 102: 8085–8103

Aizawa Y, Tatsumi Y, Yamada H. Element transport during dehydration of subducting sediments: Implication for arc and ocean island magmatism. Island Arc, 1999, 8: 38–46

Tatsumi Y. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology, 2001, 29: 323–326

Tatsumi Y, Kawabata H, Sato K, et al. The Petrology and Geochemistry of Oto-Zan Composite Lava Flow on Shodo-Shima Island, SW Japan: Remelting of a Solidified High-Mg Andesite Magma. J Petrol, 2006, 47: 595–629

Suyehiro K, Takahashi N, Ariie Y, et al. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science, 1996, 272: 390–392

Takahashi N, Suyehiro K, Shinohara M. Implications from the seismic crustal structure of the northern Izu-Bonin arc. Island Arc, 1998, 7: 383–394

Takahashi N, Kodaira S, Klemperer L S, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology, 2007, 35: 203–206

Kodaira S, Sato T, Takahashi N, et al. Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J Geophys Res, 2007, 112, B05104, doi: 10.1029/2006JB004593

Crawford W C, Hildebrand J A, Dorman L M, et al. Tonga Ridge and Lau Basin crustal structure from seismic refraction data. J Geophys Res, 2003, 108: 2195, doi: 10.1029/2001JB001435

Nakanishi A, Kurashimo E, Tatsumi Y, et al. Crustal evolution of the southwestern Kuril Arc deduced from seismic velocity and geochemical structure. Tectonophys, 2008, in press

Sakamoto I, Hirata D, Fujioka K. Description of basement rocks from the Izu-Bonin arc. Res Rep Kanagawa Prefectural Museum, 1999, 9: 21–39

Haraguchi S, Ishii T, Kimura J-I, et al. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrib Mineral Petrol, 2003, 145: 151–168

Connolly J A D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 2005, 236: 524–541

Hacker B R, Abers G A, Peacock S M. Subduction factory: 1, Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res, 2003, 108(B1), doi: 10.1029/2001JB001127

Kitamura K, Ishikawa M, Arima M. Petrological model of the northern Izu-Bonin-Mariana arc crust: Constraints from high-pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophys, 2003, 371: 213–221

Tatsumi Y, Shukuno H, Tani K, et al. Structure and growth of the Izu-Bonin-Mariana arc crust: II. The role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res, 2008, 113, doi: 10.1029/2007JB005121

Tatsumi Y. Slab melting: Its role in continental crust formation and mantle evolution. Geophys Res Lett, 2000, 27: 3941–3944