Making a Hematopoietic Stem Cell

Trends in Cell Biology - Tập 26 - Trang 202-214 - 2016
Michael G. Daniel1,2,3, Carlos-Filipe Pereira4, Ihor R. Lemischka1,2,5, Kateri A. Moore1,2
1Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, NY, USA
2Black Family Stem Cell Institute, Icahn School of Medicine, New York, NY, USA
3The Graduate School of Biomedical Science, Icahn School of Medicine, New York, NY, USA
4CNC – Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197 Cantanhede, Portugal
5Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, NY, USA

Tài liệu tham khảo

Takizawa, 2011, Ex vivo expansion of hematopoietic stem cells: mission accomplished?, Swiss Med. Wkly., 141, w13316 Siena, 2000, Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy, J. Clin. Oncol., 18, 1360, 10.1200/JCO.2000.18.6.1360 Petersdorf, 2013, The major histocompatibility complex: a model for understanding graft-versus-host disease, Blood, 122, 1863, 10.1182/blood-2013-05-355982 Boitano, 2010, Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells, Science, 329, 1345, 10.1126/science.1191536 Fares, 2014, Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal, Science, 345, 1509, 10.1126/science.1256337 Chaurasia, 2014, Epigenetic reprogramming induces the expansion of cord blood stem cells, J. Clin. Invest., 124, 2378, 10.1172/JCI70313 Liu, 2013, Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons, Nat. Commun., 4, 2183, 10.1038/ncomms3183 Federation, 2014, The use of small molecules in somatic-cell reprogramming, Trends Cell Biol., 24, 179, 10.1016/j.tcb.2013.09.011 Zhang, 2012, Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming, J. Cell Sci., 125, 5609, 10.1242/jcs.096032 Xu, 2008, A chemical approach to stem-cell biology and regenerative medicine, Nature, 453, 338, 10.1038/nature07042 Takahashi, 2006, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663, 10.1016/j.cell.2006.07.024 Takahashi, 2007, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 131, 861, 10.1016/j.cell.2007.11.019 Lee, 2013, Transcriptional regulation and its misregulation in disease, Cell, 152, 1237, 10.1016/j.cell.2013.02.014 Pereira, 2012, Reprogramming cell fates: insights from combinatorial approaches, Ann. N.Y. Acad. Sci, 1266, 7, 10.1111/j.1749-6632.2012.06508.x Orkin, 1995, Transcription factors and hematopoietic development, J. Biol. Chem., 270, 4955, 10.1074/jbc.270.10.4955 Pulecio, 2014, Conversion of human fibroblasts into monocyte-like progenitor cells, Stem Cells, 32, 2923, 10.1002/stem.1800 Kurian, 2013, Conversion of human fibroblasts to angioblast-like progenitor cells, Nat. Methods, 10, 77, 10.1038/nmeth.2255 Vierbuchen, 2010, Direct conversion of fibroblasts to functional neurons by defined factors, Nature, 463, 1035, 10.1038/nature08797 Sekiya, 2011, Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors, Nature, 475, 390, 10.1038/nature10263 Qian, 2012, In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes, Nature, 485, 593, 10.1038/nature11044 Choi, 1990, MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes, Proc. Natl. Acad. Sci. U.S.A., 87, 7988, 10.1073/pnas.87.20.7988 Davis, 1987, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, 51, 987, 10.1016/0092-8674(87)90585-X Son, 2011, Conversion of mouse and human fibroblasts into functional spinal motor neurons, Cell Stem Cell, 9, 205, 10.1016/j.stem.2011.07.014 Ieda, 2010, Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors, Cell, 142, 375, 10.1016/j.cell.2010.07.002 Buganim, 2012, Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors, Cell Stem Cell, 11, 373, 10.1016/j.stem.2012.07.019 Feng, 2008, PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells, Proc. Natl. Acad. Sci. U.S.A., 105, 6057, 10.1073/pnas.0711961105 Han, 2012, Direct reprogramming of fibroblasts into neural stem cells by defined factors, Cell Stem Cell, 10, 465, 10.1016/j.stem.2012.02.021 Huang, 2011, Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors, Nature, 475, 386, 10.1038/nature10116 Najm, 2013, Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells, Nat. Biotechnol., 31, 426, 10.1038/nbt.2561 Pereira, 2013, Induction of a hemogenic program in mouse fibroblasts, Cell Stem Cell, 13, 205, 10.1016/j.stem.2013.05.024 Zhou, 2008, Extreme makeover: converting one cell into another, Cell Stem Cell, 3, 382, 10.1016/j.stem.2008.09.015 Robinton, 2012, The promise of induced pluripotent stem cells in research and therapy, Nature, 481, 295, 10.1038/nature10761 Papapetrou, 2010, Reconstructing blood from induced pluripotent stem cells, F1000 Med. Rep., 2, 44, 10.3410/M2-44 Murry, 2008, Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development, Cell, 132, 661, 10.1016/j.cell.2008.02.008 Kim, 2009, Application of induced pluripotent stem cells to hematologic disease, Cytotherapy, 11, 980, 10.3109/14653240903348319 Lim, 2013, Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells, Stem Cell Res. Ther., 4, 71, 10.1186/scrt222 Keller, 1993, Hematopoietic commitment during embryonic stem cell differentiation in culture, Mol. Cell. Biol., 13, 473, 10.1128/MCB.13.1.473 Hole, 1996, A limited temporal window for the derivation of multilineage repopulating hematopoietic progenitors during embryonal stem cell differentiation in vitro, Blood, 88, 1266, 10.1182/blood.V88.4.1266.bloodjournal8841266 Choi, 2012, Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures, Cell Rep., 2, 553, 10.1016/j.celrep.2012.08.002 Zovein, 2008, Fate tracing reveals the endothelial origin of hematopoietic stem cells, Cell Stem Cell, 3, 625, 10.1016/j.stem.2008.09.018 Bertrand, 2010, Haematopoietic stem cells derive directly from aortic endothelium during development, Nature, 464, 108, 10.1038/nature08738 Gordon-Keylock, 2011, Endothelio-hematopoietic relationship: getting closer to the beginnings, BMC Biol., 9, 88, 10.1186/1741-7007-9-88 Chen, 2011, Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells, Cell Stem Cell, 9, 541, 10.1016/j.stem.2011.10.003 Antas, 2013, Hemogenic endothelium: a vessel for blood production, Int. J. Biochem. Cell Biol., 45, 692, 10.1016/j.biocel.2012.12.013 Chen, 2009, Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter, Nature, 457, 887, 10.1038/nature07619 Sturgeon, 2013, Defining the path to hematopoietic stem cells, Nat. Biotechnol., 31, 416, 10.1038/nbt.2571 Boiers, 2013, Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells, Cell Stem Cell, 13, 535, 10.1016/j.stem.2013.08.012 Lancrin, 2009, The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage, Nature, 457, 892, 10.1038/nature07679 Amabile, 2013, In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells, Blood, 121, 1255, 10.1182/blood-2012-06-434407 Takaki, 2002, Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk, J. Exp. Med., 195, 151, 10.1084/jem.20011170 Suzuki, 2013, Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation, Mol. Ther., 21, 1424, 10.1038/mt.2013.71 Forrester, 2012, Mechanism of action of HOXB4 on the hematopoietic differentiation of embryonic stem cells, Stem Cells, 30, 379, 10.1002/stem.1036 McKinney-Freeman, 2008, Isolation of hematopoietic stem cells from mouse embryonic stem cells, Curr. Protoc. Stem Cell Biol., 10.1002/9780470151808.sc01f03s4 Kyba, 2002, HoxB4 confers definitive lymphoid–myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors, Cell, 109, 29, 10.1016/S0092-8674(02)00680-3 Tashiro, 2012, Promotion of hematopoietic differentiation from mouse induced pluripotent stem cells by transient HoxB4 transduction, Stem Cell Res., 8, 300, 10.1016/j.scr.2011.09.001 Wang, 2005, Embryonic stem cell-derived hematopoietic stem cells, Proc. Natl. Acad. Sci. U.S.A., 102, 19081, 10.1073/pnas.0506127102 Chadwick, 2003, Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells, Blood, 102, 906, 10.1182/blood-2003-03-0832 Bowles, 2006, HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells, Stem Cells, 24, 1359, 10.1634/stemcells.2005-0210 Wang, 2005, Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression, J. Exp. Med., 201, 1603, 10.1084/jem.20041888 Doulatov, 2013, Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors, Cell Stem Cell, 13, 459, 10.1016/j.stem.2013.09.002 Elcheva, 2014, Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators, Nat. Commun., 5, 4372, 10.1038/ncomms5372 Clarke, 2013, The expression of Sox17 identifies and regulates haemogenic endothelium, Nat. Cell Biol., 15, 502, 10.1038/ncb2724 Ditadi, 2015, Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages, Nat. Cell Biol., 17, 580, 10.1038/ncb3161 Corada, 2013, Sox17 is indispensable for acquisition and maintenance of arterial identity, Nat. Commun., 4, 2609, 10.1038/ncomms3609 Nakajima-Takagi, 2013, Role of SOX17 in hematopoietic development from human embryonic stem cells, Blood, 121, 447, 10.1182/blood-2012-05-431403 Ran, 2013, RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells, Blood, 121, 2882, 10.1182/blood-2012-08-451641 Real, 2012, SCL/TAL1 regulates hematopoietic specification from human embryonic stem cells, Mol. Ther., 20, 1443, 10.1038/mt.2012.49 Bar-Nur, 2015, Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage, Nat. Biotechnol., 33, 761, 10.1038/nbt.3247 Maza, 2015, Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors, Nat. Biotechnol., 33, 769, 10.1038/nbt.3270 Szabo, 2010, Direct conversion of human fibroblasts to multilineage blood progenitors, Nature, 468, 521, 10.1038/nature09591 Mitchell, 2014, Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors, Stem Cells, 32, 2178, 10.1002/stem.1721 Qiu, 2014, Divisional history and hematopoietic stem cell function during homeostasis, Stem Cell Rep., 2, 473, 10.1016/j.stemcr.2014.01.016 Pereira, 2014, There will be blood” from fibroblasts, Cell Cycle, 13, 335, 10.4161/cc.27507 Batta, 2014, Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells, Cell Rep., 9, 1871, 10.1016/j.celrep.2014.11.002 Vereide, 2014, An expandable, inducible hemangioblast state regulated by fibroblast growth factor, Stem Cell Rep., 3, 1043, 10.1016/j.stemcr.2014.10.003 Riddell, 2014, Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors, Cell, 157, 549, 10.1016/j.cell.2014.04.006 Sandler, 2014, Reprogramming human endothelial cells to haematopoietic cells requires vascular induction, Nature, 511, 312, 10.1038/nature13547 Butler, 2012, Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells, Blood, 120, 1344, 10.1182/blood-2011-12-398115 Gori, 2015, Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells, J. Clin. Invest., 125, 1243, 10.1172/JCI79328 Vierbuchen, 2011, Direct lineage conversions: unnatural but useful?, Nat. Biotechnol., 29, 892, 10.1038/nbt.1946 Cherry, 2013, Reprogrammed cells for disease modeling and regenerative medicine, Annu. Rev. Med., 64, 277, 10.1146/annurev-med-050311-163324 Sadelain, 2004, Insertional oncogenesis in gene therapy: how much of a risk?, Gene Ther., 11, 569, 10.1038/sj.gt.3302243 Persons, 2010, Lentiviral vector gene therapy: effective and safe?, Mol. Ther., 18, 861, 10.1038/mt.2010.70 Mandal, 2013, Reprogramming human fibroblasts to pluripotency using modified mRNA, Nat. Protoc., 8, 568, 10.1038/nprot.2013.019 Warren, 2010, Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell Stem Cell, 7, 618, 10.1016/j.stem.2010.08.012 Yoshioka, 2013, Efficient generation of human iPSCs by a synthetic self-replicative RNA, Cell Stem Cell, 13, 246, 10.1016/j.stem.2013.06.001 Vaskova, 2013, Epigenetic memory” phenomenon in induced pluripotent stem cells, Acta Nat., 5, 15, 10.32607/20758251-2013-5-4-15-21 Kim, 2010, Epigenetic memory in induced pluripotent stem cells, Nature, 467, 285, 10.1038/nature09342 Papp, 2011, Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape, Cell Res., 21, 486, 10.1038/cr.2011.28