Making Sense of Ecotoxicological Test Results: Towards Application of Process-based Models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alda Álvarez O, Jager T, Kooijman SALM, Kammenga JE (2005) Responses to stress of Caenorhabditis elegans populations with different reproductive strategies. Funct Ecol 19:656–64
Bartell SM, Gardner RH, O’Neill RV (1992) Ecological Risk Estimation. Lewis Publishers Chelsea, MI, US
Bedaux JJM, Kooijman SALM (1994) Statistical analysis of bioassays based on hazard modeling. Environ Ecol Stat 1:303–14
Bradbury SP, Feijtel TCJ, Van Leeuwen CJ (2004) Meeting the scientific needs of ecological risk assessment in a regulatory context. Environ Sci Technol 38:463A–70A
Chapman PM, Fairbrother A, Brown D (1998) A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Toxicol Chem 17:99–108
Christensen FM, De Bruijn JHM, Hansen BG, Munn SJ, Sokull-Klüttgen B, Pedersen F (2003) Assessment tools under the new European Union chemicals policy. GMI 41:5–19
Crane M, Newman MC (2000) What level of effect is a no observed effect? Environ. Toxicol Chem 19:516–9
Crommentuijn T, Doodeman CJAM, Doornekamp A, Van Gestel CAM (1997) Life-table study with the springtail Folsomia candida (Willem) exposed to cadmium, chlorpyrifos and triphenyltin hydroxide. In Van Straalen NM, Løkke H (eds) Ecological Risk Assessment of Contaminants in Soil. Chapman & Hall, London, UK, pp 275–91
EC (2003) Technical Guidance Documents on Risk Assessment, Part II. EUR 20418 EN/2 (http://ecb.jrc.it/tgdoc). Ispra, Italy: European Commission, Joint Research Centre
Forbes TL, Forbes VE (1993) A critique of the use of distribution-based extrapolation models in ecotoxicology. Funct Ecol 7:249–54
Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–56
Heugens, EHW (2003) Predicting Effects of Multiple Stressors on Aquatic Biota. Ph.D. Thesis, University of Amsterdam
Heugens EHW, Jager T, Creyghton R, Kraak MHS, Hendriks AJ, Van Straalen NM, Admiraal W (2003) Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environ Sci Technol 37:2145–51
Jager T, Alda Álvarez O, Kammenga JE, Kooijman SALM (2005) Modelling nematode life cycles using dynamic energy budgets. Funct Ecol 19:136–44
Jager T, Crommentuijn T, Van Gestel CAM, Kooijman SALM (2004) Simultaneous modeling of multiple endpoints in life-cycle toxicity tests. Environ Sci Technol 38:2894–900
Jager T, Kooijman SALM (2005) Modeling receptor kinetics in the analysis of survival data for organophosphorus pesticides. Environ Sci Technol 39:8307–14
Kooijman SALM (1996) An alternative for NOEC exists, but the standard model has to be abandoned first. Oikos 75:310–6
Kooijman SALM (2000) Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press Cambridge, UK
Kooijman SALM (2001) Quantitative aspects of metabolic organization: a discussion of concepts. Phil Trans R Soc Lond B 356:331–49
Kooijman SALM, Bedaux JJM (1996a) Analysis of toxicity tests on Daphnia survival and reproduction. Water Res 30:1711–23
Kooijman SALM, Bedaux JJM, Gerritsen AAM, Oldersma H, Hanstveit AO (1998) Dynamic measures for ecotoxicity. In Newman MC, Strojan C (eds) Risk Assessment: Logic and Measurement. Ann Arbor Press, Chelsea, MI, US, pp 187–224
Kooijman SALM, Hanstveit AO, Nyholm N (1996) No-effect concentrations in algal growth inhibition tests. Water Res 30:1625–32
Kooijman SALM, Jager T, Kooi BW (2004) The relationship between elimination rates and partition coefficients. Chemosphere 57:745–53
Kooijman SALM, Metz JAJ (1984) On the dynamics of chemically stressed populations: the deduction of population consequences from effects on individuals. Ecotoxicol Environ Saf 8:254–74
Kszos LA, Stewart AJ (1991) Effort-allocation analysis of the seven-day fathead minnow (Pimephales promelas) and Ceriodaphnia dubia toxicity tests. Environ Toxicol Chem 10:67–72
Laskowski R (1995) Some good reasons to ban the use of NOEC, LOEC and related concepts in ecotoxicology. Oikos 73:140–4
McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Body residues and modes of toxic action. Environ Sci Technol 27:1719–28
Newman MC, McCloskey JT (2000) The individual tolerance concept is not the sole explanation for the probit dose-effect model. Environ Toxicol Chem 19:520–6
Nisbet RM, Muller EB, Lika K, Kooijman SALM (2000) From molecules to ecosystems through dynamic energy budget models. J Anim Ecol 69:913–26
OECD (1998) Report of the OECD Workshop on Statistical Analysis of Aquatic Toxicity Data. Organisation for Economic Cooperation and Development (OECD) Paris, France
OECD (2003) Draft Guidance Document on the Statistical Analysis of Ecotoxicity Data. Paris, France: Organisation for Economic Cooperation and Development (OECD), (for ISO as working draft ISO TC 147/SC 5 N 18, ISO/WD 1)
Péry ARR, Bedaux JJM, Zonneveld C, Kooijman SALM (2001) Analysis of bioassays with time-varying concentrations. Water Res 35:3825–32
Posthuma L, Suter GW, Traas TP (2002) Species Sensitivity Distributions in Ecotoxicology. Lewis Publishers, Boca Raton, FL, USA
Reinert KH, Giddings JM, Judd L (2002) Effects analysis of time-varying or repeated exposures in aquatic ecological risk assessment of agrochemicals. Environ Toxicol Chem 21:1977–92
Smith EP, Cairns J (1993) Extrapolation methods for setting ecological standards for water quality: statistical and ecological concerns. Ecotoxicology 2:203–19
Snell TW, Serra M (2000) Using probability of extinction to evaluate the ecological significance of toxicant effects. Environ Toxicol Chem 19:2357–63
Sprague JB (1969) Measurement of pollutant toxicity to fish. I. Bioassay methods for acute toxicity. Water Res 3:793–821