Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các trạng thái Majorana bị ràng buộc trong một điểm lượng tử được kích thích
Tóm tắt
Chúng tôi nghiên cứu một điểm lượng tử được kích thích theo chu kỳ trong hai cấu hình khác nhau. Trong cấu hình đầu tiên, một điểm lượng tử được kết nối với một siêu dẫn topo và một điện cực kim loại thường. Trong cấu hình thứ hai, một điểm lượng tử hình chữ T được kết nối với hai siêu dẫn topo và được kết nối bên với một điện cực kim loại thường. Bằng cách kết hợp các kỹ thuật hàm xanh phi cân bằng và hình thức Floquet, chúng tôi thu được phổ quasienergy như một hàm của biên độ, tần số và hiệu số pha siêu dẫn. Chúng tôi chỉ ra rằng các trạng thái phát triển các phản ứng điện tử độc đáo, chẳng hạn như sự đối xứng hạt-vùng bị phá vỡ xuất hiện khi xem xét tính không cục bộ của các trạng thái bound Majorana. Cuối cùng, chúng tôi tính toán dòng điện trung bình theo thời gian và điện trở phân kỳ để tiết lộ các dấu hiệu phổ qua các đại lượng có thể đo được về mặt vật lý trong hai cấu hình được đề xuất.
Từ khóa
#điểm lượng tử #trạng thái Majorana #siêu dẫn topo #hàm xanh phi cân bằng #điện trở phân kỳTài liệu tham khảo
H.-L. Huang, D. Wu, D. Fan, X. Zhu, Superconducting quantum computing: a review. Sci. China Inf. Sci. 63, 180501 (2020). https://doi.org/10.1007/s11432-020-2881-9
J.M. Gambetta, J.M. Chow, M. Steffen, Building logical qubits in a superconducting quantum computing system. NPJ Quantum Inf. 3, 2 (2017). https://doi.org/10.1038/s41534-016-0004-0
J. Clarke, F.K. Wilhelm, Superconducting quantum bits. Nature 453, 1031 (2008). https://doi.org/10.1038/nature07128
B. Pannetier, H. Courtois, Andreev reflection and proximity effect. J. Low Temp. Phys. 118, 599 (2000). https://doi.org/10.1023/A:1004635226825
A. Odobesko, D. Di Sante, A. Kowalski, S. Wilfert, F. Friedrich, R. Thomale, G. Sangiovanni, M. Bode, Observation of tunable single-atom Yu–Shiba–Rusinov states. Phys. Rev. B 102, 174504 (2020). https://doi.org/10.1103/PhysRevB.102.174504
A. Jellinggaard, K. Grove-Rasmussen, M.H. Madsen, J. Nygård, Tuning Yu–Shiba–Rusinov states in a quantum dot. Phys. Rev. B 94, 064520 (2016). https://doi.org/10.1103/PhysRevB.94.064520
L. Pavešić, R. Žitko, Qubit based on spin-singlet Yu–Shiba–Rusinov states. Phys. Rev. B 105, 075129 (2022). https://doi.org/10.1103/PhysRevB.105.075129
R.-P. Riwar, M. Houzet, J.S. Meyer, Y.V. Nazarov, Multi-terminal Josephson junctions as topological matter. Nat. Commun. 7, 11167 (2016). https://doi.org/10.1038/ncomms11167
N. Pankratova, H. Lee, R. Kuzmin, K. Wickramasinghe, W. Mayer, J. Yuan, M.G. Vavilov, J. Shabani, V.E. Manucharyan, Multiterminal Josephson effect. Phys. Rev. X 10, 031051 (2020). https://doi.org/10.1103/PhysRevX.10.031051
H.-Y. Xie, M.G. Vavilov, A. Levchenko, Topological Andreev bands in three-terminal Josephson junctions. Phys. Rev. B 96, 161406 (2017). https://doi.org/10.1103/PhysRevB.96.161406
K. Flensberg, Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 82, 180516 (2010). https://doi.org/10.1103/PhysRevB.82.180516
K. Laubscher, J. Klinovaja, Majorana bound states in semiconducting nanostructures. J. Appl. Phys. 130, 081101 (2021). https://doi.org/10.1063/5.0055997
C. Schrade, L. Fu, Majorana superconducting qubit. Phys. Rev. Lett. 121, 267002 (2018). https://doi.org/10.1103/PhysRevLett.121.267002
T. Karzig, W.S. Cole, D.I. Pikulin, Quasiparticle poisoning of Majorana qubits. Phys. Rev. Lett. 126, 057702 (2021). https://doi.org/10.1103/PhysRevLett.126.057702
J.F. Steiner, F. von Oppen, Readout of Majorana qubits. Phys. Rev. Res. 2, 033255 (2020). https://doi.org/10.1103/PhysRevResearch.2.033255
M. Houzet, J.S. Meyer, Majorana–Weyl crossings in topological multiterminal junctions. Phys. Rev. B 100, 014521 (2019). https://doi.org/10.1103/PhysRevB.100.014521
L. Peralta Gavensky, G. Usaj, C.A. Balseiro, Topological phase diagram of a three-terminal Josephson junction: from the conventional to the Majorana regime. Phys. Rev. B 100, 014514 (2019). https://doi.org/10.1103/PhysRevB.100.014514
F. Medina, J.P. Ramos-Andrade, L. Rosales, P. Orellana, Josephson and persistent currents in a quantum ring between topological superconductors. Ann. Phys. 533, 2100305 (2021). https://doi.org/10.1002/andp.202100305
K. Sakurai, M.T. Mercaldo, S. Kobayashi, A. Yamakage, S. Ikegaya, T. Habe, P. Kotetes, M. Cuoco, Y. Asano, Nodal Andreev spectra in multi-Majorana three-terminal Josephson junctions. Phys. Rev. B 101, 174506 (2020). https://doi.org/10.1103/PhysRevB.101.174506
T.D. Stanescu, S. Tewari, Robust low-energy Andreev bound states in semiconductor-superconductor structures: importance of partial separation of component Majorana bound states. Phys. Rev. B 100, 155429 (2019). https://doi.org/10.1103/PhysRevB.100.155429
C.-X. Liu, J.D. Sau, S. Das Sarma, Distinguishing topological Majorana bound states from trivial Andreev bound states: proposed tests through differential tunneling conductance spectroscopy. Phys. Rev. B 97, 214502 (2018). https://doi.org/10.1103/PhysRevB.97.214502
E. Prada, P. San-Jose, M.W.A. de Moor, A. Geresdi, E.J.H. Lee, J. Klinovaja, D. Loss, J. Nygård, R. Aguado, L.P. Kouwenhoven, From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575 (2020). https://doi.org/10.1038/s42254-020-0228-y
M. Hell, K. Flensberg, M. Leijnse, Distinguishing Majorana bound states from localized Andreev bound states by interferometry. Phys. Rev. B 97, 161401 (2018). https://doi.org/10.1103/PhysRevB.97.161401
P. Yu, J. Chen, M. Gomanko, G. Badawy, E.P.A.M. Bakkers, K. Zuo, V. Mourik, S.M. Frolov, Non-Majorana states yield nearly quantized conductance in proximatized nanowires. Nat. Phys. 17, 482 (2021). https://doi.org/10.1038/s41567-020-01107-w
M. Aghaee et al., InAs-Al hybrid devices passing the topological gap protocol. Phys. Rev. B 107, 245423 (2023). https://doi.org/10.1103/PhysRevB.107.245423
T. Oka, S. Kitamura, Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387 (2019). https://doi.org/10.1146/annurev-conmatphys-031218-013423
C. Weitenberg, J. Simonet, Tailoring quantum gases by floquet engineering. Nat. Phys. 17, 1342 (2021). https://doi.org/10.1038/s41567-021-01316-x
J. Smits, L. Liao, H.T.C. Stoof, P. van der Straten, Observation of a space-time crystal in a superfluid quantum gas. Phys. Rev. Lett. 121, 185301 (2018). https://doi.org/10.1103/PhysRevLett.121.185301
K. Sacha, J. Zakrzewski, Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2017). https://doi.org/10.1088/1361-6633/aa8b38
M.S. Rudner, N.H. Lindner, Band structure engineering and non-equilibrium dynamics in floquet topological insulators. Nat. Rev. Phys. 2, 229 (2020). https://doi.org/10.1038/s42254-020-0170-z
S. Kitamura, H. Aoki, Floquet topological superconductivity induced by chiral many-body interaction. Commun. Phys. 5, 174 (2022). https://doi.org/10.1038/s42005-022-00936-w
R.-X. Zhang, S. Das Sarma, Anomalous floquet chiral topological superconductivity in a topological insulator sandwich structure. Phys. Rev. Lett. 127, 067001 (2021). https://doi.org/10.1103/PhysRevLett.127.067001
A.C. Potter, T. Morimoto, A. Vishwanath, Classification of interacting topological floquet phases in one dimension. Phys. Rev. X 6, 041001 (2016). https://doi.org/10.1103/PhysRevX.6.041001
T. Kitagawa, E. Berg, M. Rudner, E. Demler, Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010). https://doi.org/10.1103/PhysRevB.82.235114
F. Harper, R. Roy, M.S. Rudner, S. Sondhi, Topology and broken symmetry in floquet systems. Annu. Rev. Condens. Matter Phys. 11, 345 (2020). https://doi.org/10.1146/annurev-conmatphys-031218-013721
G. Engelhardt, J. Cao, Dynamical symmetries and symmetry-protected selection rules in periodically driven quantum systems. Phys. Rev. Lett. 126, 090601 (2021). https://doi.org/10.1103/PhysRevLett.126.090601
G. Wang, C. Li, P. Cappellaro, Observation of symmetry-protected selection rules in periodically driven quantum systems. Phys. Rev. Lett. 127, 140604 (2021). https://doi.org/10.1103/PhysRevLett.127.140604
B. Min, B. Fajardo, T. Pereg-Barnea, K. Agarwal, Dynamical approach to improving Majorana qubits and distinguishing them from trivial bound states. Phys. Rev. B 105, 155412 (2022). https://doi.org/10.1103/PhysRevB.105.155412
E. Prada, R. Aguado, P. San-Jose, Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 085418 (2017). https://doi.org/10.1103/PhysRevB.96.085418
D.J. Clarke, Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B 96, 201109 (2017). https://doi.org/10.1103/PhysRevB.96.201109
B. Baran, T. Domański, Quasiparticles of a periodically driven quantum dot coupled between superconducting and normal leads. Phys. Rev. B 100, 085414 (2019). https://doi.org/10.1103/PhysRevB.100.085414
B. Baran, R. Taranko, T. Domański, Subgap dynamics of double quantum dot coupled between superconducting and normal leads. Sci. Rep. 11, 11138 (2021). https://doi.org/10.1038/s41598-021-90080-2
C. Ortega-Taberner, A.-P. Jauho, J. Paaske, Anomalous Josephson current through a driven double quantum dot. Phys. Rev. B 107, 115165 (2023). https://doi.org/10.1103/PhysRevB.107.115165
A. Keliri, B. Douçot, Driven Andreev molecule. Phys. Rev. B 107, 094505 (2023). https://doi.org/10.1103/PhysRevB.107.094505
F.M.C. Damanet, E. Mascarenhas, D. Pekker, A.J. Daley, Controlling quantum transport via dissipation engineering. Phys. Rev. Lett. 123, 180402 (2019). https://doi.org/10.1103/PhysRevLett.123.180402
M. Cheng, M. Becker, B. Bauer, R.M. Lutchyn, Interplay between Kondo and Majorana interactions in quantum dots. Phys. Rev. X 4, 031051 (2014). https://doi.org/10.1103/PhysRevX.4.031051
G. Górski, J. Barański, I. Weymann, T. Domański, Interplay between correlations and Majorana mode in proximitized quantum dot. Sci. Rep. 8, 15717 (2018). https://doi.org/10.1038/s41598-018-33529-1
A.Y. Kitaev, Unpaired Majorana fermions in quantum wires. PHYS-USP+ 44, 131 (2001). https://doi.org/10.1070/1063-7869/44/10S/S29
J. Danon, E.B. Hansen, K. Flensberg, Conductance spectroscopy on Majorana wires and the inverse proximity effect. Phys. Rev. B 96, 125420 (2017). https://doi.org/10.1103/PhysRevB.96.125420
L.S. Ricco, V.L. Campo, I.A. Shelykh, A.C. Seridonio, Majorana oscillations modulated by Fano interference and degree of nonlocality in a topological superconducting-nanowire-quantum-dot system. Phys. Rev. B 98, 075142 (2018). https://doi.org/10.1103/PhysRevB.98.075142
M.-T. Deng, S. Vaitiekėnas, E. Prada, P. San-Jose, J. Nygård, P. Krogstrup, R. Aguado, C.M. Marcus, Nonlocality of Majorana modes in hybrid nanowires. Phys. Rev. B 98, 085125 (2018). https://doi.org/10.1103/PhysRevB.98.085125
L.S. Ricco, Y. Marques, J.E. Sanches, I.A. Shelykh, A.C. Seridonio, Interaction induced hybridization of Majorana zero modes in a coupled quantum-dot-superconducting-nanowire hybrid system. Phys. Rev. B 102, 165104 (2020). https://doi.org/10.1103/PhysRevB.102.165104
F. Medina, J.P. Ramos-Andrade, L. Rosales, P. Orellana, Influence of Majorana bound states in quantum rings. Ann. Phys. 532, 2000199 (2020). https://doi.org/10.1002/andp.202000199
B.H. Wu, J.C. Cao, C. Timm, Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions. Phys. Rev. B 86, 035406 (2012). https://doi.org/10.1103/PhysRevB.86.035406
N. Tsuji, T. Oka, H. Aoki, Correlated electron systems periodically driven out of equilibrium: \(\text{ Floquet }+\text{ DMFT }\) formalism. Phys. Rev. B 78, 235124 (2008). https://doi.org/10.1103/PhysRevB.78.235124
Q.-F. Sun, J. Wang, T.-H. Lin, Resonant Andreev reflection in a normal-metal-quantum-dot-superconductor system. Phys. Rev. B 59, 3831 (1999). https://doi.org/10.1103/PhysRevB.59.3831
Q.-B. Zeng, S. Chen, L. You, R. Lü, Transport through a quantum dot coupled to two Majorana bound states. Front. Phys. 12, 127302 (2016). https://doi.org/10.1007/s11467-016-0620-3
A. Schuray, L. Weithofer, P. Recher, Fano resonances in Majorana bound states-quantum dot hybrid systems. Phys. Rev. B 96, 085417 (2017). https://doi.org/10.1103/PhysRevB.96.085417
T. Zhou, M.C. Dartiailh, K. Sardashti, J.E. Han, A. Matos-Abiague, J. Shabani, I. Žutić, Fusion of Majorana bound states with mini-gate control in two-dimensional systems. Nat. Commun. 13, 1738 (2022). https://doi.org/10.1038/s41467-022-29463-6
Z. Wang, W.-C. Huang, Q.-F. Liang, X. Hu, Landau–Zener–Stückelberg interferometry for majorana qubit. Sci. Rep. 8, 7920 (2018). https://doi.org/10.1038/s41598-018-26324-5
W.-C. Huang, Q.-F. Liang, D.-X. Yao, Z. Wang, Manipulating the Majorana qubit with Landau–Zener–Stückelberg interference. Phys. Rev. A 92, 012308 (2015). https://doi.org/10.1103/PhysRevA.92.012308
R. Taranko, T. Kwapiński, T. Domański, Transient dynamics of a quantum dot embedded between two superconducting leads and a metallic reservoir. Phys. Rev. B 99, 165419 (2019). https://doi.org/10.1103/PhysRevB.99.165419
J. Avila, F. Peñaranda, E. Prada, P. San-Jose, R. Aguado, Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy. Commun. Phys. 2, 133 (2019). https://doi.org/10.1038/s42005-019-0231-8
L. Zhou, Non-hermitian floquet topological superconductors with multiple Majorana edge modes. Phys. Rev. B 101, 014306 (2020). https://doi.org/10.1103/PhysRevB.101.014306