Hóa học ion chính, δ13C và 87Sr/86Sr như những chỉ thị về sự phát triển thủy hóa và nguồn gốc của độ mặn trong nước ngầm ở lưu vực Yuncheng, Trung Quốc

Springer Science and Business Media LLC - Tập 19 - Trang 835-850 - 2011
Matthew J. Currell1, Ian Cartwright1,2
1School of Geosciences, Monash University, Clayton, Australia
2National Centre for Groundwater Research and Training, Flinders University, Adelaide, Australia

Tóm tắt

Các quá trình kiểm soát hóa học thủy văn trong lưu vực Yuncheng, Trung Quốc, đã được phân tích bằng cách sử dụng hóa học ion chính, tỷ lệ 87Sr/86Sr và giá trị δ13C. Quá trình bay hơi nước trong giai đoạn nạp nước đã làm tăng nồng độ chất tan lên khoảng 5–50 lần trong các tầng nước cổ sâu, trong khi mức độ bay hơi cao hơn đã xảy ra trong các tầng nước ngầm hiện đại nông. Các trầm tích tầng chứa nước (bột vàng) chứa khoảng 15% trọng lượng canxit; xu hướng trong nồng độ HCO3 của nước ngầm và giá trị δ13C (dao động từ −16.4 đến −8.2‰) cho thấy quá trình phong hóa cacbonat là một nguồn DIC quan trọng. Tỷ lệ 87Sr/86Sr của nước ngầm (0.7110–0.7162, trung vị 0.7116) tương tự như ở cả carbonate bột vàng (0.7109–0.7116) và nước mưa địa phương (0.7112), và thấp hơn đáng kể so với Sr trong silicat tầng chứa nước (0.7184–0.7251). Mặc dù có bằng chứng cho sự hòa tan đáng kể của cacbonat, nước ngầm chủ yếu nghèo Ca (< 10% tổng số cation) và giàu Na, do quá trình trao đổi cation. Sự bão hòa với các khoáng chất cacbonat xảy ra trong hoặc ngay sau giai đoạn nạp nước (tất cả các chỉ số bão hòa canxit và dolomit đều dương). Quá trình hòa tan cacbonat tiếp theo trong tầng chứa nước sâu phải diễn ra như một quá trình thứ hai, để đáp ứng với sự mất Ca (qua trao đổi ion) và/hoặc thông qua sự hòa tan không đồng nhất của dolomit và canxit không tinh khiết. Điều này nhất quán với các tương quan dương giữa các giá trị δ13C và tỷ lệ Mg/Ca cũng như Sr/Ca (r² = 0.32 và 0.34).

Từ khóa


Tài liệu tham khảo

An Z, Kukla GJ, Porter SC, Xiao J (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat Res 36:29–36 An Z, Porter SC, Kutzbach JE, Wu X, Wang S, Liu X, Li X, Zhou W (2000) Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev 19:743–762 Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin RA, Stoniolo AR, Thir JM (2006) Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Sci Total Environ 358:97–120 Blaser PC, Coetsiers M, Aeschbach-Hertig W, Kipfer R, Van Camp M, Loosli HH, Walraevens K (2010) A new groundwater radiocarbon correction approach accounting for palaeoclimate conditions during recharge and hydrochemical evolution: the Ledo-Paniselian Aquifer, Belgium. Appl Geochem 25:437–455 Cao XH (2005) Study of the confined groundwater system of middle-deep layers in Sushui Catchment (in Chinese). Shanxi Hydrotech Bull 3(Aug 2005):41–43 Cao JJ, Zhu CS, Chow JC, Liu WG, Han YM, Watson JG (2008) Stable carbon and oxygen isotopic composition of carbonate in fugitive dust in the Chinese Loess Plateau. Atmos Environ 42:9118–9122 Cartwright I (2010) Using groundwater geochemistry and environmental isotopes to assess the correction of 14C ages in a silicate-dominated aquifer system. J Hydrol 382:174–187 Cartwright I, Weaver T, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl Geochem 19:1233–1254 Cerling TE, Pederson BL, Von Damm KL (1989) Sodium-calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geology 17:552–554 China Geological Survey (2006) Groundwater resources and environmental issues assessment in the six major basins of Shanxi (in Chinese). China Geological Survey Spec Publ., China Geological Survey, Beijing Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York Currell MJ, Cartwright I, Bradley DC, Han DM (2010) Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J Hydrol 385:216–229 Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:328–350 Dickin AP (1995) Radiogenic isotope geology. Cambridge University Press, Cambridge Dogramaci SS, Herczeg AL (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262:50–67 Edmunds WM, Walton NRG (1983) The Lincolnshire Limestone–Hydrogeochemical evolution over a ten-year period. J Hydrol 61:201–211 Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochim Cosmochim Acta 46:2069–81 Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21:2148–2170 Fujita S, Takahashi A, Weng J, Huang L, Kim H, Li C, Huang FTC, Jeng F (2000) Precipitation chemistry in East Asia. Atmos Environ 34:525–537 Gallet S, Jahn B, Torii M (1996) Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem Geol 133:67–88 Gao X, Wang Y, Li Y, Guo Q (2007) Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng Basin, northern China. Environ Geol 53:795–803 Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl Geochem 23:3519–3534 Gleik PH (2009) China and water. In: Gleik PH, Cooley H, Cohen MJ, Morikawa M, Morrison J, Palaniappan M (ed) The world’s water 2008–2009: the biennial report on freshwater resources. Island, Washington, DC, pp 79–97 Gomez ML, Blarasin MT, Martinez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57:143–155 Guo Q, Wang Y, Gao X, Ma T (2007) A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan Basin, northern China. Environ Geol 52:923–932 Han DM, Liang X, Currell MJ, Jin MG, Zhong WJ, Liu CM, Song XF (2010) Environmental isotopic and hydrochemical characteristics of groundwater systems in Daying and Qicun geothermal fields, Xinzhou Basin, Shanxi, China. Hydrol Process 22:3157–3176 Han JM, Keppens E, Liu TS, Paepe R, Jiang WY (1997) Stable isotope composition of the carbonate concretion in loess and climate change. Quat Int 37:37–43 Harrington GA, Herczeg AL (2003) The importance of silicate weathering of a sedimentary aquifer in arid Central Australia indicated by very high 87Sr/86Sr ratios. Chem Geol 199:281–292 Herczeg AL, Edmunds WM (2000) Inorganic ions as tracers. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 31–77 Katz BG, Bullen TD (1996) The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in a mantled karst. Geochim Cosmochim Acta 60:5075–5087 Kreuzer AM, Rohden CV, Friedrich R, Chen Z, Shi J, Hajdas I, Aeschbach-Hertig W (2009) A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain. Chem Geol 259:168–180 Lasaga AC (1984) Chemical kinetics of water–rock interaction. J Geophys Res 89:4009–4025 Li X (2003) Pressure of water shortage on agriculture in arid region of China. Chin Geog Sci 13:124–129 Liu TS (1988) Loess in China, 2nd edn. China Ocean Press, Beijing Liu TS, Zhang SX, Han JM (1986) Stratigraphy and palaeoenvironmental changes in the loess of central China. Quat Sci Rev 5:489–495 McNab WW Jr, Singleton MJ, Moran JE, Esser BK (2009) Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley, California. Appl Geochem 24:129–137 Okada K, Naruse H, Tanaka T, Nemoto O, Iwasaka Y, Wa P, Duce RA, Uematsu M, Merrill JT, Arao K (1990) X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North Pacific Ocean. Atmos Environ 24A:1369–1378 Organisation for Economic Co-operation and Development (2005) OECD review of agricultural policies: China. Organisation for Economic Co-operation and Development, Paris Parkhurst DL, Apello CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Res Invest Rep 99–4259 Rao Z, Zhu Z, Chen F, Zhang J (2006) Does δ13Ccarb of Chinese loess indicate past C3/C4 abundance? A review of research on stable carbon isotopes of the Chinese loess. Quat Sci Rev 25:2251–2257 Scanlon BR, Nicot JP, Reedy RC, Kurtzman D, Mukherjee A, Nordstrom DK (2009) Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Appl Geochem 24:2061–2071 Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016 Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural water. Wiley, New York Veresoglou DS, Tsialtas JT, Barbayiannis N, Zalidis GC (1995) Caesium and strontium uptake by two pasture plant species grown in organic and inorganic soils. Ag Eco Environ 56:37–42 Walraevens K, Cardenal-Escarcena J, Van Camp M (2007) Reaction transport modelling of a freshening aquifer (Tertiary Ledo-Paniselian Aquifer, Flanders-Belgium). Appl Geochem 22:289–305 Wang Q, Li C, Tian G, Zhang W, Liu C, Ning L, Yue J, Cheng Z, He C (2002) Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1 Ma. Sci Chin (Series D) Earth Sci 45:110–122 Yokoo Y, Nakano T, Nishikawa M, Quan H (2004) Mineralogical variation of Sr–Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific. Chem Geol 204:45–62 Yuncheng Regional Water Bureau (and Shanxi Geological Survey) (1982) Hydrological and Geological maps and explanations for the Yuncheng region, 1:100000. Shanxi Geological Survey Special Report (in Chinese), Yuncheng Regional Water Bureau, Yuncheng City, China Zhu GF, Li ZZ, Su YH, Ma JZ, Zhang YY (2007) Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J Hydrol 333:239–251