Cây ngô có các chiến lược khác nhau để bảo vệ hạt đang phát triển của chúng khỏi độc tính của cadmium

Theoretical and Experimental Plant Physiology - Tập 32 - Trang 203-211 - 2020
Fabiana Hibary Kato1, Marcia Eugenia Amaral Carvalho1, Salete Aparecida Gaziola1, Ricardo Antunes Azevedo1
1Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” / Universidade de São Paulo (ESALQ/USP), Piracicaba, Brazil

Tóm tắt

Nghiên cứu này nhằm xác định nồng độ của các axit amin hòa tan, ni tơ (N) và Cd trong các hạt ngô đang phát triển, được trồng trong đất ô nhiễm Cd từ giai đoạn gieo hạt đến các giai đoạn sinh sản. Các hoạt động cụ thể và tính chất ức chế phản hồi của các enzyme chuyển hóa lysine (Lys) cũng được xác định trong các hạt đang phát triển. Năng suất ngô tiềm năng đã bị suy giảm do sự tiếp xúc với Cd. Nồng độ cadmium trong các cơ quan cây trồng theo thứ tự giảm dần: rễ > thân = lá > hạt đang phát triển (37.04, 1.95, 1.46 và 0.22 mg kg−1 Cd, tương ứng). Nồng độ Cd tương đối thấp trong các hạt đang phát triển còn lại là kết quả của việc giảm sự chuyển vị Cd trong cây do rễ và bông tai. Các cây tiếp xúc với Cd có hạt đang phát triển với nồng độ N tăng (lên tới 7%) so với các cây kiểm soát. Hơn nữa, mức độ axit amin hòa tan (đặc biệt là histidine, glycine, tyrosine, methionine, isoleucine và valine) đã được tăng lên trong các hạt đang phát triển của các cây được xử lý Cd. Ngoài ra, những thay đổi trong tính chất phản hồi của dihydrodipicolinate synthase (DHDPS), một enzyme từ chuyển hóa lysine, đã được quan sát trong các hạt đang phát triển. Tóm lại, nghiên cứu hiện tại cho thấy rằng sự tiếp xúc của cây mẹ với Cd có thể làm thay đổi nồng độ của các axit amin hòa tan và hành vi của các enzyme chuyển hóa Lys trong các hạt đang phát triển. Nghiên cứu này không chỉ cung cấp thông tin mới về ảnh hưởng của việc tiếp xúc lâu dài với Cd trên cây, mà còn cung cấp dữ liệu về các chiến lược bảo vệ của cây chống lại độc tính của Cd.

Từ khóa

#cadmium #ngô #hạt đang phát triển #axit amin hòa tan #enzyme chuyển hóa lysine

Tài liệu tham khảo

Alaee S, Talaiekhozani A, Rezaei S, Alaee K, Yousefian E (2014) Cadmium and male infertility. J Infertil Reprod Biol 2:62–69 Angelovici R, Batushansky A, Deason N, Gonzalez-Jorge S, Gore MA, Fait A, DellaPenna D (2017) Network-guided GWAS improves identification of genes affecting free amino acids. Plant Physiol 173:872–886 Ata-Ul-Karim ST, Cang L, Wang Y, Zhou D (2020) Interactions between nitrogen application and soil properties and their impacts on the transfer of cadmium from soil to wheat (Triticum aestivum L.) grain. Geoderma 357:113923 Azevedo RA, Arruda P (2010) High-lysine maize: the key discoveries that have made it possible. Amino Acids 39:979–989 Azevedo RA, Arruda P, Turner WL, Lea PJ (1997) The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry 46:395–419 Azevedo RA, Damerval C, Landry J, Lea PJ, Bellato CM, Meinhardt LW, Le Guilloux M, Delhaye S, Toro AA, Gaziola SA, Berdejo BDA (2003) Regulation of maize lysine metabolism and endosperm protein synthesis by opaque and floury mutations. Eur J Biochem 270:4898–4908 Bieleski RL, Turner NA (1966) Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Anal Biochem 17:278–293 Carvalho MEA, Castro PRC, Azevedo RA (2020a) Hormesis in plants under Cd exposure: from toxic to beneficial element? J Hazard Mater 384:121434 Carvalho MEA, Castro PRC, Kozak M, Azevedo RA (2020b) The sweet side of misbalanced nutrients in cadmium-stressed plants. Ann Appl Biol 176:275–284 Carvalho MEA, Piotto FA, Franco MR, Rossi ML, Martinelli AP, Cuypers A, Azevedo RA (2019) Relationship between Mg, B and Mn status and tomato tolerance against Cd toxicity. J Environ Manage 240:84–92 Carvalho MEA, Piotto FA, Gaziola SA, Jacomino AP, Jozefczak M, Cuypers A, Azevedo RA (2018) New insights about cadmium impacts on tomato: plant acclimation, nutritional changes, fruit quality and yield. Food Energy Secur 7:e00131 Commission Regulation (2014) EU 2014 no. 488/2014 of 12 May 2014. Amending Regulation (EC) no 1881/2006 as regards maximum levels of cadmium in foodstuffs. Available from: https://www.fsai.ie/uploadedFiles/Reg488_2014.pdf. Accessed 23 Jan 2018 Dietrich CC, Bilnicki K, Korzeniak U, Briese C, Nagel KA, Babst-Kostecka A (2019) Does slow and steady win the race? Root growth dynamics of Arabidopsis halleri ecotypes in soils with varying trace metal element contamination. Environ Exp Bot 167:103862 Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810 Esalq—Escola Superior de Agricultura “Luiz de Queiroz” (2018) Climatological data series of “Luiz de Queiroz” campus at Piracicaba, SP, Brazil. Available from: https://www.leb.esalq.usp.br/posto/index.html. Accessed 23 Jan 2018 Fahad S, Hussain S, Saud S, Hassan S, Shan D, Chen Y, Deng N, Khan F, Wu C, Wu W, Shah F, Ullah B, Yousaf M, Ali S, Huang J (2015) Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization. Clean: Soil, Air, Water 43:1433–1440 FAO—Food and Agriculture Organization of the United Nations (2018) Cereals & Grains. Available from: https://www.fao.org/in-action/inpho/crop-compendium/cereals-grains/en/. Accessed 15 Apr 2020 Fidalgo F, Freitas R, Ferreira R, Pessoa AM, Teixeira J (2011) Solanum nigrum L. antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environ Exp Bot 72:312–319 Frisch DA, Gengenbach BG, Tommey AM, Seliner JM, Somers DA, Myers DE (1991) Isolation and characterization of dihydrodipicolinate synthase from maize. Plant Physiol 96:444–452 Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46 Gaziola SA, Alessi ES, Guimaraes PEO, Damerval C, Azevedo RA (1999) Quality protein maize: a biochemical study of enzymes involved in lysine metabolism. J Agric Food Chem 47:1268–1275 He YM, Fan XM, Zhang GQ, Li B, Li TG, Zu YQ, Zhan FD (2019) Effects of arbuscular mycorrhizal fungi and dark septate endophytes on maize performance and root traits under a high cadmium stress. S Afr J Bot. https://doi.org/10.1016/j.sajb.2019.09.018 Hédiji H, Djebali W, Belkadhi A, Cabasson C, Moing A, Rolin D, Brouquisse R, Gallusci P, Chaïbi W (2015) Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: consequences on fruit production. S Afric J Bot 97:176–181 Hendrix S, Iven V, Eekhout T, Huybrechts M, Pecqueur I, Horemans N, Keunen E, De Veylder L, Vangronsveld J, Cuypers A (2020) Suppressor of Gamma Response 1 modulates the DNA damage response and oxidative stress response in leaves of cadmium-exposed Arabidopsis thaliana. Front Plant Sci 11:366 Jaouani K, Karmous I, Ostrowski M, El Ferjani E, Jakubowska A, Chaoui A (2018) Cadmium effects on embryo growth of pea seeds during germination: investigation of the mechanisms of interference of the heavy metal with protein mobilization-related factors. J Plant Physiol 226:64–76 Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208 Kabata-Pendias A (2011) Trace elements in soils and plants. CRC Press, Boca Raton Kato FH, Carvalho MEA, Gaziola SA, Piotto FA, Azevedo RA (2020) Lysine metabolism and amino acid profile in maize grains from plants subjected to cadmium exposure. Sci Agric 77:e20180095 Kovačević V, Kádár I, Andrić L, Zdunić Z, Iljkić D, Varga I, Jović J (2019) Environmental and genetic effects on cadmium accumulation capacity and yield of maize. Czech J Genet Plant Breed 55:70–75 Kovacevic V, Vragolovic A (2011) Genotype and environmental effects on cadmium concentration in maize. J Life Sci 5:926–932 Kumpaisal R, Hashimoto T, Yamada Y (1987) Purification and characterization of dihydrodipicolinate synthase from wheat suspension cultures. Plant Physiol 85:145–151 Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37 Małkowski E, Sitko K, Szopiński M, Gieroń Z, Pogrzeba M, Kalaji HM, Zieleźnik-Rusinowska P (2020) Hormesis in plants: the role of oxidative stress, auxins and photosynthesis in corn treated with Cd or Pb. Int J Mol Sci 21:2099 Melo LCA, Alleoni LRF, Carvalho G, Azevedo RA (2011) Cadmium and barium toxicity effects on growth and antioxidant capacity of soybean (Glycine max L.) plants, grown in two soil types with different physicochemical properties. J Plant Nutr Soil Sci 174:847–859 Norton GJ, Travis AJ, Danku JMC, Salt DE, Hossain M, Islam MR, Price AH (2017) Biomass and elemental concentrations of 22 rice cultivars grown under alternate wetting and drying conditions at three field sites in Bangladesh. Food Energy Secur 6:98–112 Pereira MP, Corrêa FF, Castro EM, Oliveira JPV, Pereira FJ (2017) Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes. Protoplasma 254:2117–2126 Retamal-Salgado J, Hirzel J, Walter I, Matus I (2017) Bioabsorption and bioaccumulation of cadmium in the straw and grain of maize (Zea mays L.) in growing soils contaminated with cadmium in different environment. Int J Environ Res Public Health 14:1399 Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-Ur-Rehman M, Abbas Z, Hannan F (2017) Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health 39:259–277 SAS Institute (2011) SAS/STAT user’s guide: version 9.3. Cary, SAS Institute Sawidis T (2008) Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum. Protoplasma 233:95–106 Schenck CA, Maeda HA (2018) Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry 149:82–102 Sebastian A, Prasad MNV (2016) Modulatory role of mineral nutrients on cadmium accumulation and stress tolerance in Oryza sativa L. seedlings. Environ Sci Pollut Res 23:1224–1233 Sharma SS, Dietz KF (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726 Soares C, Carvalho MEA, Azevedo RA, Fidalgo F (2019) Plants facing oxidative challenges—a little help from the antioxidant networks. Environ Exp Bot 161:4–25 Stepansky A, Leustek T (2006) Histidine biosynthesis in plants. Amino Acids 30:127–142 Teklić T, Lončarić Z, Kovačević V, Singh BR (2013) Metallic trace elements in cereal grain—a review: How much metal do we eat? Food Energy Secur 2:81–95 Varisi VA, Medici LO, Van der Meer I, Lea PJ, Azevedo RA (2007) Dihydrodipicolinate synthase in opaque and floury maize mutants. Plant Sci 173:458–467 Vazquez A, Recalde L, Cabrera A, Groppa MD, Benavides MP (2020) Does nitrogen source influence cadmium distribution in Arabidopsis plants? Ecotoxicol Environ Saf 191:110163 Wang X, Gao Y, Feng Y, Li X, Wei Q, Sheng X (2014) Cadmium stress disrupts the endomembrane organelles and endocytosis during Picea wilsonii pollen germination and tube growth. PLoS ONE 9:e94721 Yu H, Zhang F, Wang G, Liu Y, Liu D (2013) Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis. J Exp Bot 64:599–612