Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach

Rhizosphere - Tập 15 - Trang 100211 - 2020
Maria Idaline Pessoa Cavalcanti1,2, Rejane de Carvalho Nascimento3, Dalila Ribeiro Rodrigues1, Indra Elena Costa Escobar4,5, Ana Carla Resende Fraiz4, Adailson Pereira de Souza2, Ana Dolores Santiago de Freitas6, Rafaela Simão Abrahão Nóbrega3, Paulo Ivan Fernandes-Júnior7
1Universidade Estadual da Paraíba, Av. das Baraúnas, 351, Campina Grande, Paraíba, Brazil
2Universidade Federal da Paraíba, Centro de Ciências Agrárias, Rodovia BR 079, Km 12, Areia, Paraíba, Brazil
3Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Rua Rui Barbosa, 710, Cruz das Almas, Bahia, Brazil
4Universidade Federal do Vale do São Francisco, Colegiado de Farmácia, Av. José de Sá Maniçoba, S/n, Petrolina, Pernambuco, Brazil
5Universidade Federal de Pernambuco, Centro de Biociências, Av. Prof. Moraes Rego, 1235, Recife, Pernambuco, Brazil
6Universidade Federal Rural de Pernambuco, Departamento de Agronomia, R. Dom Manoel de Medeiros, s/n, Recife, Pernambuco, Brazil
7Embrapa Semiárido, BR 428, Km 152, Petrolina, Pernambuco, Brazil

Tài liệu tham khảo

Alves, 2016, Plant growth promotion by four species of the genus Burkhoderia, Plant Soil, 399, 373, 10.1007/s11104-015-2701-4 Alves, 2014, Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants, Plant Soil, 387, 307, 10.1007/s11104-014-2295-2 Antunes, 2019, Associative diazotrophic bacteria from forage grasses in the Brazilian semiarid region are effective plant growth promoters, Crop Pasture Sci., 70, 899, 10.1071/CP19076 Baldani, 2005, History on the biological nitrogen fixation research in graminaceous plants : special emphasis on the Brazilian experience, An. Acad. Bras. Cienc., 77, 549, 10.1590/S0001-37652005000300014 Baldani, 2014, The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists, Plant Soil, 384, 413, 10.1007/s11104-014-2186-6 Barraquio, 1997, Isolation of endophytic diazotrophic bacteria from wetland rice, Plant Soil, 194, 15, 10.1023/A:1004246904803 Beneduzi, 2013, Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil, Appl. Soil Ecol., 63, 94, 10.1016/j.apsoil.2012.08.010 Berraquero, 1976, Establecimiento de índices para el estudio de la solubilización de fosfatos por bacterias del suelo, Ars. Pharm, 17, 399 Biswas, 2000, Rhizobia inoculation improves nutrient uptake and growth of lowland rice, Soil Sci. Soc. Am. J., 64, 1644, 10.2136/sssaj2000.6451644x Burbano, 2011, Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce, Environ. Microbiol. Rep., 3, 383, 10.1111/j.1758-2229.2010.00238.x Cavalcanti, 1998 Celador-Lera, 2017, Rhizobium zeae sp. nov., isolated from maize (Zea mays L.) roots, Int. J. Syst. Evol. Microbiol., 67, 2306, 10.1099/ijsem.0.001944 CONAB, 2019 Crook, 2013, Complete genome sequence of the Sesbania symbiont and rice growth-promoting endophyte Rhizobium sp. strain IRBG74, Genome Announc., 1, 10.1128/genomeA.00934-13 Cummings, 2009, Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia, Environ. Microbiol., 11, 2510, 10.1111/j.1462-2920.2009.01975.x de Oliveira-Francesquini, 2017, Differential colonization by bioprospected rhizobial bacteria associated with common bean in different cropping systems, Can. J. Microbiol., 63, 682, 10.1139/cjm-2016-0784 Dias, 2014, Screening of fluorescent rhizobacteria for the biocontrol of soilborne plant pathogenic fungi, Caatinga, 27, 1 Döbereiner, 1995 Fernandes-Júnior, 2015, The resurrection plant Tripogon spicatus (Poaceae) harbors a diversity of plant growth promoting bacteria in northeastern Brazilian Caatinga, Rev. Bras. Cienc. do Solo, 39, 993, 10.1590/01000683rbcs20140646 Fernandes Júnior, 2013, Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon, Rev. Biol. Trop., 61, 991, 10.15517/rbt.v61i2.11238 Ferreira, 2011, Sisvar: a computer statistical analysis system, Cienc. E Agrotecnol, 35, 1039, 10.1590/S1413-70542011000600001 Gao, 2017, Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root, Int. J. Syst. Evol. Microbiol., 67, 2798, 10.1099/ijsem.0.002025 Grange, 2007, New insights into the origins and evolution of rhizobia that nodulate common bean (Phaseolus vulgaris) in Brazil, Soil Biol. Biochem., 39, 867, 10.1016/j.soilbio.2006.10.008 Grönemeyer, 2015, Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts, Int. J. Syst. Evol. Microbiol., 65, 3241, 10.1099/ijsem.0.000403 Grönemeyer, 2015, Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional namibian pulses, Int. J. Syst. Evol. Microbiol., 65, 4886, 10.1099/ijsem.0.000666 Grönemeyer, 2014, Rhizobia indigenous to the Okavango region in sub-saharan Africa: diversity, adaptations, and host specificity, Appl. Environ. Microbiol., 80, 7244, 10.1128/AEM.02417-14 Gutiérrez-Zamora, 2001, Natural endophytic association between Rhizobium etli and maize (Zea mays L.), J. Biotechnol., 91, 117, 10.1016/S0168-1656(01)00332-7 Hara, 2019, Identification of nitrogen-fixing Bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses, Front. Microbiol., 10, 407, 10.3389/fmicb.2019.00407 Hungria, 2010, Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil, Plant Soil, 331, 413, 10.1007/s11104-009-0262-0 Hungria, 2016, Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics, Agric. Ecosyst. Environ., 221, 125, 10.1016/j.agee.2016.01.024 Jaiswal, 2019, Widespread distribution of highly adapted Bradyrhizobium species nodulating diverse legumes in africa, Front. Microbiol., 10, 310, 10.3389/fmicb.2019.00310 Johnston-Monje, 2016, Bacterial populations in juvenile maize rhizospheres originate from both seed and soil, Plant Soil, 405, 337, 10.1007/s11104-016-2826-0 Kandel, 2017, Bacterial endophyte colonization and distribution within plants, Microorganisms, 5, 77, 10.3390/microorganisms5040077 Kavamura, 2013, Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought, Microbiol. Res., 168, 10.1016/j.micres.2012.12.002 Leite, 2017, Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype, Front. Plant Sci., 7, 1, 10.3389/fpls.2016.02064 Leite, 2009, Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley, Rev. Bras. Cienc. do Solo, 33, 1215, 10.1590/S0100-06832009000500015 Lima, 2015, Endophytic bacteria in cacti native to a Brazilian semi-arid region, Plant Soil, 389, 25, 10.1007/s11104-014-2344-x Liu, 2017, Inner plant values: diversity, colonization and benefits from endophytic bacteria, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.02552 Marag, 2018, Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.), Microbiol. Res., 214, 101, 10.1016/j.micres.2018.05.016 Marinho, 2017, Symbiotic and agronomic efficiency of new cowpea rhizobia from Brazilian Semi-Arid, Bragantia, 71, 273, 10.1590/1678-4499.003 Martins, 2003, Contribution of biological nitrogen fixation to cowpea: a strategy for improving grain yield in the semi-arid region of Brazil, Biol. Fertil. Soils, 38, 333, 10.1007/s00374-003-0668-4 Menezes Júnior, 2019, Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars, Braz. J. Microbiol. Miguel, 2016, Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth, Antonie Leeuwenhoek, 109, 755, 10.1007/s10482-016-0676-7 Mitra, 2016, A rhamnose-deficient lipopolysaccharide mutant of Rhizobium sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice, J. Exp. Bot., 67, 5869, 10.1093/jxb/erw354 Moreira, 2006, Caracterização da vegetação de Caatinga e da dieta de novilhos no Sertão de Pernambuco, Pesqui. Agropecuária Bras., 41, 1643, 10.1590/S0100-204X2006001100011 Norris, 1964, The symbiotic specialization of african Trifolium spp. in relation to their taxonomy and their agronomic use, East African Agric. For. J., 29, 214, 10.1080/00128325.1964.11661928 Oliveira, 2020, Are cowpea-nodulating bradyrhizobial communities influenced by biochar amendments in soils? Genetic diversity and symbiotic effectiveness assessment of two agricultural soils of Brazilian drylands, J. Soil Sci. Plant Nutr., 10.1007/s42729-019-00128-6 Piromyou, 2015, Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution, Appl. Environ. Microbiol., 81, 3049, 10.1128/AEM.04253-14 Ribeiro, 2012, Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia), Microbiol. Res., 167, 69, 10.1016/j.micres.2011.03.003 Ribeiro, 2015, Symbiotic efficiency and genetic diversity of soybean bradyrhizobia in Brazilian soils, Agric. Ecosyst. Environ., 212, 85, 10.1016/j.agee.2015.06.017 Ríos-Ruiz, 2020, Inoculation of bacterial consortium increases rice yield (Oryza sativa L.) reducing applications of nitrogen fertilizer in San Martin region, Peru, Rhizosphere, 14, 100200, 10.1016/j.rhisph.2020.100200 Roesch, 2007, Diversidade de bactérias diazotróficas endofíticas associadas a plantas de milho, Rev. Bras. Cienc. do Solo, 31, 1367, 10.1590/S0100-06832007000600015 Rouws, 2014, Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies, Environ. Microbiol. Rep., 6, 354, 10.1111/1758-2229.12122 Santos, 2017, Molecular and symbiotic characterization of peanut bradyrhizobia from the semi-arid region of Brazil, Appl. Soil Ecol., 121, 10.1016/j.apsoil.2017.09.033 Sarita, 2005, Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates, FEMS Microbiol. Ecol., 54, 1, 10.1016/j.femsec.2005.02.015 Sarwar, 1995, Determination of bacterially derived auxins using a microplate method, Lett. Appl. Microbiol., 20, 282, 10.1111/j.1472-765X.1995.tb00446.x Schwyn, 1987, Universal chemical assay for the detection and determination of siderophores, Anal. Biochem., 160, 47, 10.1016/0003-2697(87)90612-9 Sena, 2020, Molecular, physiological, and symbiotic characterization of cowpea rhizobia from soils under different agricultural systems in the semiarid region of Brazil, J. Soil Sci. Plant Nutr., 10.1007/s42729-020-00203-3 Silva, 2018, Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands, World J. Microbiol. Biotechnol., 34, 186, 10.1007/s11274-018-2568-7 Souza, 2013, Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots, Genet. Mol. Biol., 36, 252, 10.1590/S1415-47572013000200016 Stepkowski, 2005, European origin of Bradyrhizobium populations infecting lupins and serradella in soils of western Australia and South Africa, Appl. Environ. Microbiol., 71, 501, 10.1128/AEM.71.11.7041-7052.2005 Stoltzfus, 1997, Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen, Plant Soil, 194, 25, 10.1023/A:1004298921641 Sylvester-Bradley, 1982, Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia, Acta Amazonica, 12, 15, 10.1590/1809-43921982121015 Tampakaki, 2017, Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece, Syst. Appl. Microbiol., 40, 179, 10.1016/j.syapm.2017.01.001 Tamura, 2013, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30, 2725, 10.1093/molbev/mst197 Tan, 2001, Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR, Appl. Environ. Microbiol., 67, 3655, 10.1128/AEM.67.8.3655-3664.2001 Tounsi-Hammami, 2019, Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils, Syst. Appl. Microbiol., 10.1016/j.syapm.2019.04.002 Videira, 2013, Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum — a bioenergy crop, Plant Soil, 373, 737, 10.1007/s11104-013-1828-4 Vincent, 1970 Wang, 2013, Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China, Syst. Appl. Microbiol., 36, 101, 10.1016/j.syapm.2012.10.009 Weisburg, 1991, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 173, 697, 10.1128/JB.173.2.697-703.1991 Yanni, 2016, Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta, Plant Soil, 407, 367, 10.1007/s11104-016-2895-0 Yanni, 1997, Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth, Plant Soil, 194, 99, 10.1023/A:1004269902246 Yoon, 2017, Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies, Int. J. Syst. Evol. Microbiol., 67, 1613, 10.1099/ijsem.0.001755 Youseif, 2018, Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions, Ann. Agric. Sci., 63, 25, 10.1016/j.aoas.2018.04.002 Yuan, 2018, Rhizobium wuzhouense sp. nov., isolated from roots of Oryza officinalis, Int. J. Syst. Evol. Microbiol., 10.1099/ijsem.0.002921 Zhao, 2018, Rhizobium sp. IRBG74 alters Arabidopsis root development by affecting auxin signaling, Front. Microbiol., 8, 2556, 10.3389/fmicb.2017.02556