Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach
Tài liệu tham khảo
Alves, 2016, Plant growth promotion by four species of the genus Burkhoderia, Plant Soil, 399, 373, 10.1007/s11104-015-2701-4
Alves, 2014, Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants, Plant Soil, 387, 307, 10.1007/s11104-014-2295-2
Antunes, 2019, Associative diazotrophic bacteria from forage grasses in the Brazilian semiarid region are effective plant growth promoters, Crop Pasture Sci., 70, 899, 10.1071/CP19076
Baldani, 2005, History on the biological nitrogen fixation research in graminaceous plants : special emphasis on the Brazilian experience, An. Acad. Bras. Cienc., 77, 549, 10.1590/S0001-37652005000300014
Baldani, 2014, The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists, Plant Soil, 384, 413, 10.1007/s11104-014-2186-6
Barraquio, 1997, Isolation of endophytic diazotrophic bacteria from wetland rice, Plant Soil, 194, 15, 10.1023/A:1004246904803
Beneduzi, 2013, Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil, Appl. Soil Ecol., 63, 94, 10.1016/j.apsoil.2012.08.010
Berraquero, 1976, Establecimiento de índices para el estudio de la solubilización de fosfatos por bacterias del suelo, Ars. Pharm, 17, 399
Biswas, 2000, Rhizobia inoculation improves nutrient uptake and growth of lowland rice, Soil Sci. Soc. Am. J., 64, 1644, 10.2136/sssaj2000.6451644x
Burbano, 2011, Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce, Environ. Microbiol. Rep., 3, 383, 10.1111/j.1758-2229.2010.00238.x
Cavalcanti, 1998
Celador-Lera, 2017, Rhizobium zeae sp. nov., isolated from maize (Zea mays L.) roots, Int. J. Syst. Evol. Microbiol., 67, 2306, 10.1099/ijsem.0.001944
CONAB, 2019
Crook, 2013, Complete genome sequence of the Sesbania symbiont and rice growth-promoting endophyte Rhizobium sp. strain IRBG74, Genome Announc., 1, 10.1128/genomeA.00934-13
Cummings, 2009, Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia, Environ. Microbiol., 11, 2510, 10.1111/j.1462-2920.2009.01975.x
de Oliveira-Francesquini, 2017, Differential colonization by bioprospected rhizobial bacteria associated with common bean in different cropping systems, Can. J. Microbiol., 63, 682, 10.1139/cjm-2016-0784
Dias, 2014, Screening of fluorescent rhizobacteria for the biocontrol of soilborne plant pathogenic fungi, Caatinga, 27, 1
Döbereiner, 1995
Fernandes-Júnior, 2015, The resurrection plant Tripogon spicatus (Poaceae) harbors a diversity of plant growth promoting bacteria in northeastern Brazilian Caatinga, Rev. Bras. Cienc. do Solo, 39, 993, 10.1590/01000683rbcs20140646
Fernandes Júnior, 2013, Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon, Rev. Biol. Trop., 61, 991, 10.15517/rbt.v61i2.11238
Ferreira, 2011, Sisvar: a computer statistical analysis system, Cienc. E Agrotecnol, 35, 1039, 10.1590/S1413-70542011000600001
Gao, 2017, Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root, Int. J. Syst. Evol. Microbiol., 67, 2798, 10.1099/ijsem.0.002025
Grange, 2007, New insights into the origins and evolution of rhizobia that nodulate common bean (Phaseolus vulgaris) in Brazil, Soil Biol. Biochem., 39, 867, 10.1016/j.soilbio.2006.10.008
Grönemeyer, 2015, Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts, Int. J. Syst. Evol. Microbiol., 65, 3241, 10.1099/ijsem.0.000403
Grönemeyer, 2015, Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional namibian pulses, Int. J. Syst. Evol. Microbiol., 65, 4886, 10.1099/ijsem.0.000666
Grönemeyer, 2014, Rhizobia indigenous to the Okavango region in sub-saharan Africa: diversity, adaptations, and host specificity, Appl. Environ. Microbiol., 80, 7244, 10.1128/AEM.02417-14
Gutiérrez-Zamora, 2001, Natural endophytic association between Rhizobium etli and maize (Zea mays L.), J. Biotechnol., 91, 117, 10.1016/S0168-1656(01)00332-7
Hara, 2019, Identification of nitrogen-fixing Bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses, Front. Microbiol., 10, 407, 10.3389/fmicb.2019.00407
Hungria, 2010, Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil, Plant Soil, 331, 413, 10.1007/s11104-009-0262-0
Hungria, 2016, Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics, Agric. Ecosyst. Environ., 221, 125, 10.1016/j.agee.2016.01.024
Jaiswal, 2019, Widespread distribution of highly adapted Bradyrhizobium species nodulating diverse legumes in africa, Front. Microbiol., 10, 310, 10.3389/fmicb.2019.00310
Johnston-Monje, 2016, Bacterial populations in juvenile maize rhizospheres originate from both seed and soil, Plant Soil, 405, 337, 10.1007/s11104-016-2826-0
Kandel, 2017, Bacterial endophyte colonization and distribution within plants, Microorganisms, 5, 77, 10.3390/microorganisms5040077
Kavamura, 2013, Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought, Microbiol. Res., 168, 10.1016/j.micres.2012.12.002
Leite, 2017, Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype, Front. Plant Sci., 7, 1, 10.3389/fpls.2016.02064
Leite, 2009, Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley, Rev. Bras. Cienc. do Solo, 33, 1215, 10.1590/S0100-06832009000500015
Lima, 2015, Endophytic bacteria in cacti native to a Brazilian semi-arid region, Plant Soil, 389, 25, 10.1007/s11104-014-2344-x
Liu, 2017, Inner plant values: diversity, colonization and benefits from endophytic bacteria, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.02552
Marag, 2018, Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.), Microbiol. Res., 214, 101, 10.1016/j.micres.2018.05.016
Marinho, 2017, Symbiotic and agronomic efficiency of new cowpea rhizobia from Brazilian Semi-Arid, Bragantia, 71, 273, 10.1590/1678-4499.003
Martins, 2003, Contribution of biological nitrogen fixation to cowpea: a strategy for improving grain yield in the semi-arid region of Brazil, Biol. Fertil. Soils, 38, 333, 10.1007/s00374-003-0668-4
Menezes Júnior, 2019, Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars, Braz. J. Microbiol.
Miguel, 2016, Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth, Antonie Leeuwenhoek, 109, 755, 10.1007/s10482-016-0676-7
Mitra, 2016, A rhamnose-deficient lipopolysaccharide mutant of Rhizobium sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice, J. Exp. Bot., 67, 5869, 10.1093/jxb/erw354
Moreira, 2006, Caracterização da vegetação de Caatinga e da dieta de novilhos no Sertão de Pernambuco, Pesqui. Agropecuária Bras., 41, 1643, 10.1590/S0100-204X2006001100011
Norris, 1964, The symbiotic specialization of african Trifolium spp. in relation to their taxonomy and their agronomic use, East African Agric. For. J., 29, 214, 10.1080/00128325.1964.11661928
Oliveira, 2020, Are cowpea-nodulating bradyrhizobial communities influenced by biochar amendments in soils? Genetic diversity and symbiotic effectiveness assessment of two agricultural soils of Brazilian drylands, J. Soil Sci. Plant Nutr., 10.1007/s42729-019-00128-6
Piromyou, 2015, Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution, Appl. Environ. Microbiol., 81, 3049, 10.1128/AEM.04253-14
Ribeiro, 2012, Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia), Microbiol. Res., 167, 69, 10.1016/j.micres.2011.03.003
Ribeiro, 2015, Symbiotic efficiency and genetic diversity of soybean bradyrhizobia in Brazilian soils, Agric. Ecosyst. Environ., 212, 85, 10.1016/j.agee.2015.06.017
Ríos-Ruiz, 2020, Inoculation of bacterial consortium increases rice yield (Oryza sativa L.) reducing applications of nitrogen fertilizer in San Martin region, Peru, Rhizosphere, 14, 100200, 10.1016/j.rhisph.2020.100200
Roesch, 2007, Diversidade de bactérias diazotróficas endofíticas associadas a plantas de milho, Rev. Bras. Cienc. do Solo, 31, 1367, 10.1590/S0100-06832007000600015
Rouws, 2014, Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies, Environ. Microbiol. Rep., 6, 354, 10.1111/1758-2229.12122
Santos, 2017, Molecular and symbiotic characterization of peanut bradyrhizobia from the semi-arid region of Brazil, Appl. Soil Ecol., 121, 10.1016/j.apsoil.2017.09.033
Sarita, 2005, Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates, FEMS Microbiol. Ecol., 54, 1, 10.1016/j.femsec.2005.02.015
Sarwar, 1995, Determination of bacterially derived auxins using a microplate method, Lett. Appl. Microbiol., 20, 282, 10.1111/j.1472-765X.1995.tb00446.x
Schwyn, 1987, Universal chemical assay for the detection and determination of siderophores, Anal. Biochem., 160, 47, 10.1016/0003-2697(87)90612-9
Sena, 2020, Molecular, physiological, and symbiotic characterization of cowpea rhizobia from soils under different agricultural systems in the semiarid region of Brazil, J. Soil Sci. Plant Nutr., 10.1007/s42729-020-00203-3
Silva, 2018, Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands, World J. Microbiol. Biotechnol., 34, 186, 10.1007/s11274-018-2568-7
Souza, 2013, Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots, Genet. Mol. Biol., 36, 252, 10.1590/S1415-47572013000200016
Stepkowski, 2005, European origin of Bradyrhizobium populations infecting lupins and serradella in soils of western Australia and South Africa, Appl. Environ. Microbiol., 71, 501, 10.1128/AEM.71.11.7041-7052.2005
Stoltzfus, 1997, Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen, Plant Soil, 194, 25, 10.1023/A:1004298921641
Sylvester-Bradley, 1982, Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia, Acta Amazonica, 12, 15, 10.1590/1809-43921982121015
Tampakaki, 2017, Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece, Syst. Appl. Microbiol., 40, 179, 10.1016/j.syapm.2017.01.001
Tamura, 2013, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30, 2725, 10.1093/molbev/mst197
Tan, 2001, Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR, Appl. Environ. Microbiol., 67, 3655, 10.1128/AEM.67.8.3655-3664.2001
Tounsi-Hammami, 2019, Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils, Syst. Appl. Microbiol., 10.1016/j.syapm.2019.04.002
Videira, 2013, Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum — a bioenergy crop, Plant Soil, 373, 737, 10.1007/s11104-013-1828-4
Vincent, 1970
Wang, 2013, Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China, Syst. Appl. Microbiol., 36, 101, 10.1016/j.syapm.2012.10.009
Weisburg, 1991, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 173, 697, 10.1128/JB.173.2.697-703.1991
Yanni, 2016, Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta, Plant Soil, 407, 367, 10.1007/s11104-016-2895-0
Yanni, 1997, Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth, Plant Soil, 194, 99, 10.1023/A:1004269902246
Yoon, 2017, Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies, Int. J. Syst. Evol. Microbiol., 67, 1613, 10.1099/ijsem.0.001755
Youseif, 2018, Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions, Ann. Agric. Sci., 63, 25, 10.1016/j.aoas.2018.04.002
Yuan, 2018, Rhizobium wuzhouense sp. nov., isolated from roots of Oryza officinalis, Int. J. Syst. Evol. Microbiol., 10.1099/ijsem.0.002921
Zhao, 2018, Rhizobium sp. IRBG74 alters Arabidopsis root development by affecting auxin signaling, Front. Microbiol., 8, 2556, 10.3389/fmicb.2017.02556
