Maintenance of S. aureus in Co-culture With P. aeruginosa While Growing as Biofilms

Paul W. Woods1,2, Zane M. Haynes1,2, Elin G. Mina1,2, Cláudia N. H. Marques1,2
1Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, United States
2Department of Biological Sciences, Binghamton University, Binghamton, NY, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alavi, 2013, Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus., Infect. Drug Resist, 6, 175, 10.2147/IDR.S49039

Baldan, 2014, Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection., PLoS One, 9, 10.1371/journal.pone.0089614

Biswas, 2009, Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa., Appl. Environ. Microbiol., 75, 6910, 10.1128/AEM.01211-09

Bjarnsholt, 2013, The in vivo biofilm., Trends Microbiol., 21, 466, 10.1016/j.tim.2013.06.002

Bjarnsholt, , Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients., PLoS One, 5, 10.1371/journal.pone.0010115

Bjarnsholt, , Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control., Expert Rev. Mol. Med., 12, 10.1017/S1462399410001420

Boles, 2008, Agr-mediated dispersal of Staphylococcus aureus biofilms., PLoS Pathog., 4, 10.1371/journal.ppat.1000052

Bragonzi, 2012, Modelling co-infection of the cystic fibrosis lung by Pseudomonas aeruginosa and Burkholderia cenocepacia reveals influences on biofilm formation and host response., PLoS One, 7, 10.1371/journal.pone.0052330

Burmølle, 2006, Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms., Appl. Environ. Microbiol., 72, 3916, 10.1128/AEM.03022-05

Chekabab, 2015, Staphylococcus aureus inhibits IL-8 responses induced by Pseudomonas aeruginosa in airway epithelial cells., PLoS One, 10, 10.1371/journal.pone.0137753

Ciofu, 2010, Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants., Microbiology, 156, 1108, 10.1099/mic.0.033993-0

2016, Patient Registry Annual Data Report 2015.

Davies, 2009, A fatty acid messenger is responsible for inducing dispersion in microbial biofilms., J. Bacteriol., 191, 1393, 10.1128/JB.01214-08

Filkins, 2015, Co-Culture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model., J. Bacteriol., 197, 2252, 10.1128/JB.00059-15

Goerke, 2004, Regulatory and genomic plasticity of Staphylococcus aureus during persistent colonization and infection., Int. J. Med. Microbiol., 294, 195, 10.1016/j.ijmm.2004.06.013

Hibbing, 2010, Bacterial competition: surviving and thriving in the microbial jungle., Nat. Rev. Microbiol., 8, 15, 10.1038/nrmicro2259

Hoffman, 2006, Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa., Proc. Natl. Acad. Sci. U.S.A., 103, 19890, 10.1073/pnas.0606756104

Høiby, 2011, The clinical impact of bacterial biofilms., Int. J. Oral Sci., 3, 55, 10.4248/IJOS11026

Hurley, 2012, Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis., Eur. Respir. J., 40, 1014, 10.1183/09031936.00042012

Joseph, 2005, NF- kB activation and sustained IL-8 gene expression in primary cultures of cystic fibrosis airway epithelial cells stimulated with Pseudomonas aeruginosa., Am. J. Physiol. Cell. Mol. Physiol., 63110, 471, 10.1152/ajplung.00066.2004

Kahl, 2010, Impact of Staphylococcus aureus on the pathogenesis of chronic cystic fibrosis lung disease., Int. J. Med. Microbiol., 300, 514, 10.1016/j.ijmm.2010.08.002

Kostakioti, 2013, Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era., Cold Spring Harb. Perspect. Med., 3, 1, 10.1101/cshperspect.a010306

Le, 2015, Quorum-sensing regulation in staphylococci—an overview., Front. Microbiol., 6, 10.3389/fmicb.2015.01174

Limoli, 2017, Pseudomonas aeruginosa alginate overproduction promotes coexistence with Staphylococcus aureus in a model of cystic fibrosis respiratory infection., mBio, 8, 10.1128/mBio.00186-17

Limoli, 2016, Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes., Eur. J. Clin. Microbiol. Infect. Dis., 35, 947, 10.1007/s10096-016-2621-0

Lyczak, 2002, Lung infections associated with cystic fibrosis., Clin. Microbiol. Rev., 15, 194, 10.1128/CMR.15.2.194

Machan, 1991, Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an anti-staphylococcal substance., J. Med. Microbiol., 34, 213, 10.1099/00222615-34-4-213

Marques, 2014, The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial susceptible state., Appl. Environ. Microbiol., 80, 6976, 10.1128/AEM.0157614

Mashburn, 2005, Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture., J. Bacteriol., 187, 554, 10.1128/JB.187.2.554-566.2005

Mitchell, 2010, Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide., BMC Microbiol., 10, 10.1186/1471-2180-10-33

Moisan, 2006, Transcription of virulence factors in Staphylococcus aureus small-colony variants isolated from cystic fibrosis patients is influenced by SigB., J. Bacteriol., 188, 64, 10.1128/JB.188.1.64-76.2006

Pearson, 1997, Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes., J. Bacteriol., 179, 5756, 10.1128/jb.179.18.5756-5767.1997

Pesci, 1997, Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa., J Bacteriol, 179, 3127, 10.1128/jb.179.10.3127-3132.1997

Recsei, 1986, Regulation of exoprotein gene expression in Staphylococcus aureus by agr., Mol. Gen. Genet., 202, 58, 10.1007/BF00330517

Rogers, 2010, Revealing the dynamics of polymicrobial infections: implications for antibiotic therapy., Trends Microbiol., 18, 357, 10.1016/j.tim.2010.04.005

Sauer, 2002, Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm., J. Bacteriol., 184, 1140, 10.1128/JB.184.4.1140

Southey-Pillig, 2005, Characterization of temporal protein production in Pseudomonas aeruginosa biofilms., J. Bacteriol., 187, 8114, 10.1128/JB.187.23.8114-8126.2005

Stacy, 2016, The biogeography of polymicrobial Infections., Nat. Rev. Microbiol., 14, 93, 10.1038/nrmicro.2015.8

Stoodley, 2002, Biofilms as complex differentiates communities., Annu. Rev. Microbiol., 56, 187, 10.1146/annurev.micro.56.012302.160705

Wu, 2001, Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection., Microbiology, 147, 1105, 10.1099/00221287-147-5-1105