Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vấn Đề Lên Lịch Bảo Trì Với Cửa Sổ Thời Gian Ngẫu Nhiên Mờ Trên Một Máy Đơn
Tóm tắt
Nghiên cứu này phát triển một mô hình lên lịch tích hợp, kết hợp cả lập lịch sản xuất và lập kế hoạch bảo trì cho bài toán một máy, đồng thời xem xét nhiều mục tiêu là tối thiểu hóa tổng thời gian hoàn thành có trọng số và tối đa hóa mức độ đúng hạn trung bình trong môi trường mờ. Đầu tiên, một biến ngẫu nhiên mờ cho các cửa sổ thời gian bảo trì đã được xem xét, và mô hình này sau đó được chuyển đổi bằng cách sử dụng giá trị kỳ vọng. Cuối cùng, một ví dụ số đã được sử dụng để chứng minh giá trị của thuật toán cải tiến này, kết quả tính toán từ đó chứng minh tính hiệu quả của nó.
Từ khóa
#lập lịch bảo trì #mô hình tích hợp #thời gian hoàn thành có trọng số #môi trường mờ #máy đơnTài liệu tham khảo
Lin Y.K.: Scheduling identical jobs on uniform parallel machines under position-based learning effects. Arab. J. Sci. Eng. 39(8), 6567–6574 (2014)
Yu X., Zhang Y.: Single machine scheduling with aging effect and upper-bounded actual processing times. Arab. J. Sci. Eng. 39(2), 1489–1495 (2014)
Adiri I., Frostig E., Kan A.H.G.: Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs. Nav. Res. Logist. 38(2), 261–271 (1991)
Haddad H.: Minimizing total weighted tardiness and earliness on a single machine production scheduling problem with multi-task maintenance policy and deteriorating jobs. Arab. J. Sci. Eng. 39(8), 6543–6553 (2014)
Lee C.Y., Liman S.D.: Single machine flow-time scheduling with scheduled maintenance. Acta Inform. 29, 375–382 (1992)
Qi, X., Chen, T., Tu, F.: Scheduling the maintenance on a single machine. J. Oper. Res. Soc. pp. 1071–1078 (1999)
Liao C.J., Chen W.J.: Single-machine scheduling with periodic maintenance and nonresemable jobs. Comput. Oper. Res. 30, 1335–1347 (2003)
Chen J.S.: Optimization models for the machine scheduling problem with a single flexible maintenance activity. Eng. Optim. 38(1), 53–71 (2006)
Xu D., Liu A., Yang D.L.: Mathematical programming models for competitive two-agent single-machine scheduling with flexible periodic maintenance activities. Arab. J. Sci. Eng. 39(5), 3715–3722 (2014)
Kaplanoglu V.: Multi-agent based approach for single machine scheduling with sequence-dependent setup times and machine maintenance. Appl. Soft Comput. 23, 165–179 (2014)
Yang D.L., Hung C.L., Hsu C.J., Chern M.S.: Minimizing the makespan in a single machine scheduling problem with a flexible maintenance. J. Chin. Inst. Ind. Eng. 19(1), 63–66 (2002)
Chen J.S.: Scheduling of nonresumable jobs and flexible maintenance activities on a single machine to minimize makespan. Eur. J. Oper. Res. 190(1), 90–102 (2008)
Fitouhi M.C., Nourelfath M.: Integrating noncyclical preventive maintenance scheduling and production planning for a single machine. Int. J. Prod. Econ. 136(2), 344–351 (2012)
Li J.Q., Pan Q.K.: Chemical-reaction optimization for flexible job-shop scheduling problems with maintenance activity. Appl. Soft Comput. 12(9), 2896–2912 (2012)
Gao J., Gen M., Sun L.: Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm. J. Intell. Manuf. 17(4), 493–507 (2006)
Li J.Q., Pan Q.K.: Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities. Int. J. Prod. Econ. 145(1), 4–17 (2013)
Zadeh L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Xu J.P., Zhou X.Y.: Fuzzy-Like Multiple Objective Decision Making. Springer, Berlin (2011)
Ghadimi N., Afkousi-Paqaleh A., Emamhosseini A.: A PSO-based fuzzy long-term multi-objective optimization approach for placement and parameter setting of UPFC. Arab. J. Sci. Eng. 39(4), 2953–2963 (2014)
Vahidi H., Ghazban F., Abdoli M.A., Kazemi V.D., Banaei S.M.A.: Fuzzy analytical hierarchy process disposal method selection for an industrial state; case study Charmshahr. Arab. J. Sci. Eng. 39(2), 725–735 (2014)
Xu J., Yan F., Li S.: Vehicle routing optimization with soft time windows in a fuzzy random environment. Transp. Res. Part E: Logist. Transp. Rev. 47(6), 1075–1091 (2011)
Wang, D.; Xu, J.P.: A fuzzy multi-objective optimizing scheduling for operation room in hospital. In: Proceedings of the 2008 International Conference on Industrial Engineering and Engineering Management, pp. 914–918 (2008)
Tang J., Pan Z., Fung R.Y., Lau H.: Vehicle routing problem with fuzzy time windows. Fuzzy Sets Syst. 160(5), 683–695 (2009)
Low C., Ji M., Hsu C.J.; et al.: Minimizing the makespan in a single machine scheduling problems with flexible and periodic maintenance. Appl. Math. Model. 34(2), 334–342 (2010)
Vahedi Nouri, B., Fattahi, P., Ramezanian, R.: Hybrid firefly-simulated annealing algorithm for the flow shop problem with learning effects and flexible maintenance activities. Int. J. Prod. Res. (ahead-of-print) pp. 1–15 (2013)
Kruse, R.; Meyer, K.D.: Statistics with Vague Data (vol. 6). Springer, Berlin (1987)
Heilpern S.: The expected value of a fuzzy number. Fuzzy Sets Syst. 47(1), 81–86 (1992)
Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE Conference on Neural Networks, Piscataway, NJ, USA (1995)
Jayabarathi T., Kolipakula R.T., Krishna M.V., Yazdani A.: Application and comparison of PSO, its variants and HDE techniques to emission/economic dispatch. Arab. J. Sci. Eng. 39(2), 967–976 (2014)
Qi, J.J.; Liu, Y.J.; Lei, H.T.; Guo, B.: Solving the multi-mode resource availability cost problem in project scheduling based on modified particle swarm optimization. Arab. J. Sci. Eng. pp. 1–10 (2014)
Sadrzadeh A.: Development of both the AIS and PSO for solving the flexible job shop scheduling problem. Arab. J. Sci. Eng. 38(12), 3593–3604 (2013)
Yang C.I., Chou J.H., Chang C.K.: Hybrid Taguchi-based particle swarm optimization for flowshop scheduling problem. Arab. J. Sci. Eng. 39(3), 2393–2412 (2014)
Park, Y.S.; Kim, J.H.; Park, J.H.; Hong, J.H.: Generating unit maintenance scheduling using hybrid PSO algorithm. In: Intelligent Systems Applications to Power Systems, 2007. International Conference. 1–6. IEEE (2007)
Pereira C.M., Lapa C.M., Mol A.C., Da Luz A.F.: A particle swarm optimization (PSO) approach for non-periodic preventive maintenance scheduling programming. Prog. Nucl. Energy 52(8), 710–714 (2010)
Ai T.J., Kachitvichyanukul V.: A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 36, 1693–1702 (2009)
Bays C.: A comparison of next-fit, first-fit, and best-fit. Commun. ACM 20(3), 191–192 (1977)
Veeramachaneni, K.; Peram, T.; Mohan, C.; Osadciw, L.A.: Optimization using particle swarms with near neighbor interactions. In: Genetic and Evolutionary Computation-GECCO 2003 (pp. 110–121). Springer, Berlin (2003)
Pinedo M.: Scheduling: Theory, Algorithms and Systems. Springer, Berlin (2012)
Garey M.R., Johnson D.S.: Approximation algorithms for bin packing problems: a survey. Anal. Des. Algorithms Comb. Optim. 266, 147–172 (1981)
Li B.B., Wang L.: A hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling. IEEE Trans. Syst. Man. Cybern. B 37, 576–591 (2007)
Vanden Bergh F., Engelbrecht A.P.: A convergence proof for the particle swarm optimiser. Fundam. Inform. 105(4), 341–374 (2010)
Rosa J.L., Robin A., Silva M.B., Baldan C.A., Peres M.P.: Electrodeposition of copper on titanium wires: Taguchi experimental design approach. J. Mater. Process. Technol. 209(3), 1181–1188 (2009)
Pan Q.K., Wang L., Qian B.: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Comput. Oper. Res. 36(8), 2498–2511 (2009)