Bất ổn từ tính trong lõi Trái Đất

Pleiades Publishing Ltd - Tập 50 - Trang 463-466 - 2014
S. L. Shalimov1
1Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Tính dị hướng của đối lưu trong lõi Trái Đất có thể là nguyên nhân gây ra sự quay không đồng nhất của nó. Trong trường hợp quay phân kỳ, bất ổn từ tính- quay (bất ổn Velikhov) có thể phát sinh trong lõi lỏng. Nghiên cứu cho thấy sự phát triển của bất ổn từ tính- quay của các dòng thủy từ trong lõi lỏng của Trái Đất có khả năng sinh ra các biến đổi trong trường từ địa lý được quan sát trên bề mặt Trái Đất.

Từ khóa

#bất ổn từ tính #lõi Trái Đất #đối lưu #quay phân kỳ #trường từ địa lý

Tài liệu tham khảo

Alexandrescu, M., Gibert, D., Hulot, G., and LeMouel, J.L., Worldwide wavelet analysis of geomagnetic jerks, J. Geophys. Res, 1996, vol. 101, pp. 21975–21994. Alexandrescu, M., Gibert, D., LeMouel, J.L., and Hulot, G., An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks, J. Geophys. Res., 1999, vol. 104, pp. 17135–17746. Bloxham, J. and Gubbins, D., Thermal core-mantle interactions, Nature, 1987, vol. 325, pp. 511–513. Christensen, U.R., Dynamo scaling laws and applications to the planets, Space Sci. Rev., 2006, vol. 152, nos. 1–4, pp. 565–590. Christensen, U.R. and Aubert, J., Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields, Geophys. J. Int., 2006, vol. 166, no. 1, pp. 97–114. Courtillot, V.E. and Le Mouel, J.L., Time variations of the Earth’s magnetic field: from daily to secular, Ann. Rev. Earth Planet. Sci., 1988, vol. 16, pp. 389–476. Gissinger, C., et al., Instabilities in magnetized spherical Couette flow, Phys. Rev. E, 2011, vol. 84, 026308. Glatzmaier, G.A. and Roberts, P.H., A three-dimensional self-consistent computer simulation of a geomagnetic filed reversal, Nature, 1995, vol. 377, pp. 203–209. Golovkov, V.P., Kolomiitseva, G.I., and Rotanova, N.M., Dynamics of the main magnetic field of the Earth, in Elektromagnitnye i plazmennye protsessy ot Solntsa do yadra Zemli (Electromagnetic and Plasma Processes from the Sun to the Earth’s Core), Moscow: Nauka, 1989, pp. 212–232. Ivanov, V.V. and Bondar’, T.N., Wavelet analysis of the fine structure of jerks by mean monthly variations in the magnetic field in the period from 1955 to 2006, Geomagn. Aeron., 2012, vol. 52, no. 5, pp. 664–674. Johnson, C.L., Constable, C.G., and Tauxe, L., Mapping longterm changes in Earth’s magnetic field, Science, 2003, vol. 300, pp. 2044–2045. Jones, C.A., Planetary magnetic fields and fluid dynamos, Annu. Rev. Fluid Mech., 2011, vol. 43, pp. 583–614. Kono, M. and Roberts, P., Recent geodynamo simulations and observations of the geomagnetic field, Rev. Geophys., 2002, vol. 40, no. 4, pp. 4-1–4-53. doi: 10.1029/2000RG000102 Lakhin, V.P. and Velikhov, E.P., Instabilities of high-resistive rotating liquids in helical magnetic fields, Phys. Lett. A, 2007, vol. 369A, pp. 98–106. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika. T. 8. Elektrodinamika sploshnykh sred (Theoretical Physics: Vol. 8. Electrodynamics of Continua), Moscow: Nauka, 1982. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Mechanics of Liquids and Gases), Moscow: Nauka, 1987. Miyagoshi, T., Kageyama, A., and Sato, T., Zonal flow formation in the Earth’s core, Nature, 2010, vol. 463, pp. 793–796. doi: 10.1038/nature08754 Monin, A.S. and Yaglom, Ya.M., Statisticheskaya gidromekhanika (Statistical Hydromechanics), St. Petersburg: Gidrometeoizdat, 1992, vol. 1. Nikitina, L.A. and Ruzmaikin, A.A., Differential rotation of the liquid core of the Earth, Geomagn. Aeron., 1989, vol. 32, no. 1, pp. 140–144. Petitdemange, et al., Magnetostrophic MRI in the Earth’s outer core, Geophys. Res. Lett., 2008, vol. 35, L15305. doi: 10.1029/2008GL034395 Reshetnyak, M.Yu. and Sokolov, D.D., Geomagnetic field intensity and suppression of helicity in the geodynamo, Izv., Phys. Solid Earth, 2003, vol. 39, no. 9, pp. 774–777. Reshetnyak, M.Yu., Taylor cylinder and convection in a spherical shell, Geomagn. Aeron., 2010, vol. 50, no. 2, pp. 263–273. Roberts, P.H. and Glatzmaier, G.A., Geodynamo theory and simulations, Rev. Mod. Phys., 2000, vol. 72, pp. 1081–1123. Shalimov, S.L., On geomagnetic jerk mechanism, Geofiz. Issled., 2009, vol. 10, no. 1, pp. 38–43. Shalybkov, D.A., Hydrodynamic and hydromagnetic stability of the Couette flow, Phys. Usp., 2009, vol. 52, no. 9, pp. 915–935. Sisan, et al., Experimental observation and characterization of the magnetorotational instability, Phys. Rev. Lett., 2004, vol. 93, no. 11. doi: 10.1103/PhysRevLett.93.114502 Velikhov, E.P., Stability of the perfectly conductive fluid flow between the rotating cylinders in the magnetic field, Zh. Eksp. Teor. Fiz., 1959, vol. 36, no. 5, p. 1398. Velikhov, E.P., Magnetic geodynamics, J. Exp. Theor. Phys. Lett., 2005, vol. 82, no. 11, pp. 690–695. Willis, A.P., Sreenivasan, B., and Gubbins, D., Thermal core-mantle interaction: exploring regimes for ‘locked’ dynamo action, Phys. Earth Planet. Inter., 2007, vol. 165, pp. 83–92. Zhang, K. and Busse, F., Convection driven magnetohydrodynamic dynamos in rotating spherical shells, Geophys. Astrophys. Fluid Dyn., 1989, vol. 49, pp. 97–116.