Magnetohydrodynamics (MHD) numerical simulations on the interaction of the solar wind with the magnetosphere: A review
Tóm tắt
The magnetosphere is the outermost layer of the geospace, and the interaction of the solar wind with the magnetosphere is the key element of the space weather cause-and-effect chain process from the Sun to Earth, which is one of the most challenging scientific problems in the geospace weather study. The nonlinearity, multiple component, and time-dependent nature of the geospace make it very difficult to describe the physical process in geospace using traditional analytic analysis approach. Numerical simulations, a new research tool developed in recent decades, have a deep impact on the theory and application of the geospace. MHD simulations started at the end of the 1970s, and the initial study was limited to two-dimensional (2D) cases. Due to the intrinsic three-dimensional (3D) characteristics of the geospace, 3D MHD simulations emerged in the 1980s, in an attempt to model the large-scale structures and fundamental physical processes in the magnetosphere. They started to combine with the space exploration missions in the 1990s and make comparisons with observations. Physics-based space weather forecast models started to be developed in the 21st century. Currently only a few space-power countries such as USA and Japan have developed 3D magnetospheric MHD models. With the rapid advance of space science in China, we have developed a new global MHD model, namely PPMLR-MHD, which has high order spatial accuracy and low numerical dissipation. In this review, we will briefly introduce the global 3D MHD modeling, especially the PPMLR-MHD code, and summarize our recent work based on the PPMLR-MHD model, with an emphasis on the interaction of interplanetary shocks with the magnetosphere, large-scale current systems, reconnection voltage and transpolar potential drop, and Kelvin-Helmholtz (K-H) instability at the magnetopause.
Tài liệu tham khảo
Wang C. MHD simulations on the interaction of the solar wind with the magnetosphere. Chin J Space Sci, 2011, 31: 413–428
Hu Y Q, Wang C. Electrodynamics coupling in the solar wind-magnetosphere-ionosphere system. Chin J Space Sci, 2010, 30: 321–332
Ogino T, Walker R J, Ashour-Abdalla M. A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward. IEEE Trans Plasma Sci, 1992, 20: 817
Tanaka T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J Comput Phys, 1994, 111: 381
Raeder J, Walker R J, Ashour-Abdalla M. The structure of the distant geomagnetic tail during long periods of northward IMF. Geophy Res Lett, 1995, 22: 349
Janhunen P. GUMICS-3—A global ionosphere-magnetosphere coupling simulation with high ionospheric resolution. ESA Symposium Proceedings on “Environment Modeling for Space-based Applications”, ESTEC, 1996. 233
Powell K G, Roe P L, Linde T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys, 1999, 154: 284
Lyon J G, Fedder J A, Mobarry C M. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J Atmos Sol Terr Phys, 2004, 66: 1333
Hu Y Q, Guo X C, Wang C. On the ionospheric and reconnection potentials of the earth: Results from global MHD simulations. J Geophys Res, 2007, 112: A07215, doi: 10.1029/2006JA012145
Raeder J. Global geospace modeling: Tutorial and review. In: Buchner J, Dum C T, Scholer M, eds. Space Plasma Simulation. Lecture Notes in Physics 615. Berlin: Springer Verlag, 2003
Hu Y Q, Wu S T. A full-implicit-continuous-Eulerian (FICE) scheme for multi-dimensional, transient magnetohydrodynamic (MHD) flows. J Comput Phys, 1984, 55: 33–64
Grib S A. The interaction of solar wind shock waves with the magnetosphere of the Earth. Rep Belorussian Acad Sci, 1972, 16: 493–496
Grib S A. Interaction of non-perpendicular/parallel solar wind shock waves with the earth’s magnetosphere. Space Sci Rev, 1982, 32: 43–48
Samsonov A A, Sibeck D G, Imber J. MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere. J Geophys Res, 2007, 112: A12220, doi: 10.1029/2007JA012627
Ridley A J, De Zeeuw D L, Manchester W B, et al. The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection. Adv Space Res, 2006, 38: 263–272
Andreeova K, Pulkkinen T I, Juusola L, et al. Propagation of a shock-related disturbance in the Earth’s magnetosphere. J Geophys Res, 2011, 116: A01213, doi: 10.1029/2010JA015908
Andreeova K, Pulkkinen T I, Laitinen T V, et al. Shock propagation in the magnetosphere: Observations and MHD simulations compared. J Geophys Res, 2008, 113: A09224, doi: 10.1029/2008JA013350
Wang C, Huang Z H, Hu Y Q, et al. 3D global simulation of the interaction of interplanetary shocks with the magnetosphere. The Physics of Collisionless Shocks: 4th Annual IGPP International Astrophysics Conference, 2005. 781: 320–324
Guo X C, Hu Y Q, Wang C. Earth’s magnetosphere impinged by interplanetary shocks of different orientations. Chin Phys Lett, 2005, 22: 3221–3224
Wang C, Li H, Guo X C, et al. Numerical study on the response of the Earth’s magnetosphere-ionosphere system to super solar storm. Sci China Ser D-Earth Sci, 2012, 55: 1037–1042
Wang C, Sun T R, Guo X C, et al. Case study of nightside magnetospheric magnetic field response to interplanetary shocks. J Geophys Res, 2010, 115: A10247, doi: 10.1029/2010JA015451
Sun T R, Wang C, Li H, et al. Nightside geosynchronous magnetic field response to interplanetary shocks: Model results. J Geophys Res, 2011, 116: A04216, doi: 10.1029/2010JA016074
Wang C, Liu J B, Li H, et al. Geospace magnetic field responses to interplanetary shocks. J Geophys Res, 2009, 114: A05211, doi: 10.1029/2008JA013794
Sun T R, Wang C, Wang Y. Different Bz response regions in the nightside magnetosphere after the arrival of an interplanetary shock: Multipoint observations compared with MHD simulations. J Geophys Res, 2012, 117: A05227, doi: 10.1029/2011JA017303
Guo X C, Hu Y Q. Response of Earth’s ionosphere to interplanetary shocks (in Chinese). Chin J Geophys, 2007, 50: 817–823
Samsonov A A, Sibeck D G, Yu Y. Transient changes in magnetospheric-ionospheric currents caused by the passage of an interplanetary shock: Northward interplanetary magnetic field case. J Geophys Res, 2010, 115: A05207, doi: 10.1029/2009JA014751
Fedder J A, Slinker S P, Lyon J G, et al. A first comparison of POLAR magnetic field measurements and magnetohydrodynamic simulation results for field-aligned currents. Geophys Res Lett, 1997, 24: 2491–2494
Guo X C, Wang C, Hu Y Q, et al. Bow shock contributions to region 1 field-aligned current: A new result from global MHD simulations. Geophys Res Lett, 2008, 35: L03108, doi: 10.1029/2007GL032713
Peng Z, Hu Y Q. Contribution from the Earth’s bow shock to region 1 current under low Alfv’en Mach numbers. Chin Phys Lett, 2009, 26: 049401
Tang B B, Guo X C, Wang C, et al. Bow shock and magnetopause contributions to the cross-tail current from global MHD simulations. J Geophys Res, 2009, 114: A08203, doi: 10.1029/2009JA014325
Siebert K D, Siscoe G L. Dynamo circuit for magnetopause reconnection. J Geophys Res, 2002, 107: 1095, doi: 10.1029/2001JA000237
Tang B B, Wang C, Guo X C. Bow shock and magnetopause contributions to the magnetospheric current system: Hints from the Cluster observations. J Geophys Res, 2012, 117: A01214, doi: 10.1029/2011JA016681
Guo X C, Wang C. Effect of the dawn-dusk interplanetary magnetic field By on the field-aligned current system. J Geophys Res, 2010, 115: A01206, doi: 10.1029/2009JA014590
Kamide Y, Sun W, Akasofu S I. The average ionospheric electrodynamics for the different substorm phases. J Geophys Res, 1996, 101: 99
Kan J R. On the formation of near-Earth X-line at substorm expansion onset. J Geophys Res, 2007, 112: A01207, doi: 10.1029/2006JA012011
Tang B B, Wang C, Hu Y Q, et al. Intensification of the Cowling current in the global MHD simulation model. J Geophys Res, 2011, 116: A06204, doi: 10.1029/2010JA016320.
Wang C, Zhang J J, Tang B B, et al. Comparison of equivalent current systems for the substorm event of 8 March 2008 derived from the global PPMLR-MHD model and the KRM algorithm. J Geophys Res, 2011, 116: A07207, doi: 10.1029/2011JA0164
Moen J, Brekke A. The solar flux influence on quiet time conductances in the auroral ionosphere. Geophys Res Lett, 1993, 20: 971–974, doi: 10.1029/92GL02109
Ahn B H, Richmond A D, Kamide Y. An ionospheric conductance model based on ground magnetic disturbance data. J Geophys Res, 1998, 103: 14769–14780, doi: 10.1029/97JA03088
Reiff P H, Luhmann J G. Solar wind control of the polar-cap voltage. In: Kamide Y, Slavin J A, eds. Solar Wind-Magnetosphere Coupling. Tokyo: Terra, 1986. 453476
Russell C, Luhmann J, Lu G. Nonlinear response of the polar ionosphere to large values of the interplanetary magnetic field. J Geophys Res, 2001, 106: 18495
Ridley A J. A new formulation for the ionospheric cross polar cap potential including saturation effects. Ann Geophys, 2005, 23: 3533–3547
Hill T W, Dessley A J, Wolf R A. Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophys Res Lett, 1976, 3: 429–432
Fedder J A, Lyon J G. The solar wind-magnetosphere-ionosphere current-voltage relationship. Geophys Res Lett, 1987, 14: 880–883
Siscoe G L, Erickson G M, Sonnerup B U O, et al. Hill model of transpolar potential saturation: Comparisons with MHD simulations. J Geophys Res, 2002, 107: 1075, doi: 10.1029/2001JA000109
Siscoe G L, Raeder J, Ridly A J. Transpolar potential saturation models compared. J Geophys Res, 2004, 109: A09203, doi: 10.1029/2003JA010318
Kivelson M G, Ridley A J. Saturations of the polar cap potential: Inference from Alfvén wing. J Geophys Res, 2008, 113: A05214, doi: 10.1029/2007JA012302
Merkine V G, Papadopoulos K, Milikh G, et al. Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling. Geophys Res Lett, 2003, 30: 2180, doi: 10.1029/ 2003GL017903
Peng Z, Lai H R, Hu Y Q. Transpolar potential and reconnection voltage of the Earth from global MHD simulations. J Geophys Res, 2009, 114: A04203, doi: 10.1029/2008JA013604
Fedder J A, Lyon J G, S Slinker P, et al. Topological structure of the magnetotail as a function of interplanetary magnetic field direction. J Geophys Res, 1995, 100: 3613
Siscoe G L, Erickson G M, Sonnerrup B U °AO, et al. Global role of Ek in magnetopause reconnection: An explicit demonstration. J Geophys Res, 2001, 106: 13015
Dorelli J C, Bhattacharjee A, Raeder J. Separator reconnection at Earth’s dayside magnetopause under generic northward interplanetary magnetic field conditions. J Geophys Res, 2007, 112: A02202, doi: 10.1029/2006JA011877
Hu Y Q, Peng Z, Wang C, et al. Magnetic merging line and reconnection voltage versus IMF clock angle: Results from global MHD simulations. J Geophys Res, 2009, 114: A08220, doi: 10.1029/2009JA014118
Kan J, Lee L. Energy coupling function and solar wind magnetosphere dynamo. Geophys Res Lett, 1979, 6: 577–580
Pu Z Y, Zhang X G, Wang X G, et al. Global view of dayside magnetic reconnection with the dusk-dawn IMF orientations: A statistical study for Double Star and Cluster data. Geophys Res Lett, 2007, 34: L20101, doi: 10.1029/2007GL030336
Peng Z, Wang C, Hu Y Q. Role of IMF Bx in the solar wind-magnetosphere-ionosphere coupling. J Geophys Res, 2010, 115: A08224, doi: 10.1029/2010JA015454
Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. New York: Oxford University Press, 1961
Miura A. Dependence of the magnetopause Kelvin-Helmholtz instability on the orientation of the magnetosheath magnetic-field. Geophys Res Lett, 1995, 22: 2993–2996, doi: 10.1029/95GL02793
Collado-Vega Y M, Kessel R L, Shao X, et al. MHD flow visualization of magnetopause boundary region vortices observed during high-speed streams. J Geophys Res, 2007, 112: A06213, doi: 10.1029/2006JA012104
Claudepierre S G, Elkington S R, Wiltberger M. Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause. J Geophys Res, 2008, 113: A05218, doi: 10.1029/2007JA012890
Taylor M G G T, Lavraud B, Escoubet C P, et al. The plasma sheet and boundary layers under northward IMF: A multi-point and multi-instrument perspective. Adv Space Res, 2008, 41: 1619–1629, doi: j.asr.2007.10.013
Guo X C, Wang C, Hu Y Q. Global MHD simulation of the Kelvin-Helmholtz instability at the magnetopause for northward interplanetary magnetic field. J Geophys Res, 2010, 115: A10218, doi: 10.1029/2009JA015193. 552
Li W Y, Guo X C, Wang C. Spatial distribution of Kelvin-Helmholtz instability at low-latitude boundary layer under different solar wind speed conditions. J Geophys Res, 2012, doi: 10.1029/2012JA017780, in press
Guo X C, Wang C, Sun T R, et al. Shock waves standing in the middle- and high-latitude magnetosheath from global MHD simulations. J Geophys Res, 2011, 116: A03206, doi: 10.1029/2010JA016268
Farrugia C J, Gratton F T, Bender L, et al. Charts of joint Kelvin-Helmholtz and Rayleigh-Taylor instabilities at the day-side magnetopause for strongly northward interplanetary magnetic field. J Geophys Res, 1998, 103: 6703–6727
Hasegawa H, Retino A, Vaivads A, et al. Kelvin-Helmholtz waves at the earth’s magnetopause: Multiscale development and associated reconnection. J Geophys Res, 2009, 114: A12207, doi: 10.1029/ 2009JA014042
Manuel J R, Samson J C. The spatial development of the low-latitude boundary layer. J Geophys Res, 1993, 98: 17367–17385, doi: 10.1029/93JA01524
Hasegawa H, Fujimoto M, Takagi K, et al. Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause. J Geophys Res, 2006, 111: A09203, doi: 10.1029/2006JA011728
Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature, 2004, 430: 755–758, doi: 10.1038/nature02799