Magnetohydrodynamic shocks in a dissipative quantum plasma with exchange-correlation effects

The European Physical Journal Plus - Tập 132 - Trang 1-7 - 2017
Biswajit Sahu1, A. P. Misra2
1Department of Mathematics, West Bengal State University, Barasat, Kolkata, India
2Department of Mathematics, Siksha Bhavana, Visva-Bharati University, West Bengal, India

Tóm tắt

We investigate the nonlinear propagation of multidimensional magnetosonic shock waves (MSWs) in a dissipative quantum magnetoplasma. A macroscopic quantum magnetohydrodynamic (QMHD) model is used to include the quantum force associated with the Bohm potential, the pressure-like spin force, the exchange and correlation force of electrons, as well as the dissipative force due to the kinematic viscosity of ions and the magnetic diffusivity. The effects of these forces on the properties of arbitrary amplitude MSWs are examined numerically. It is found that the contribution from the exchange-correlation force appears to be dominant over those from the pressure gradient and the other similar quantum forces, and it results in a transition from monotonic to oscillatory shocks in the presence of either the ion kinematic viscosity or the magnetic diffusivity.

Tài liệu tham khảo

A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer, Vienna, 1990) M. Opher, L.O. Silva, D.E. Dauger, V.K. Decyk, J.M. Dawson, Phys. Plasmas 8, 2454 (2001) G. Chabrier, F. Douchin, A.Y. Potekhin, J. Phys. Condens. Matter 14, 9133 (2002) M. Opher, L.O. Silva, D.E. Danger, V.K. Decyk, J.M. Dawson, Phys. Plasmas 8, 2454 (2001) G. Chabrier, F. Douchin, A.Y. Potekhin, J. Phys.: Condens. Matter 14, 9133 (2002) H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, London, 2004) W. Li, P.J. Tanner, T.F. Gallagher, Phys. Rev. Lett. 94, 173001 (2005) L.K. Ang, P. Zhang, Phys. Rev. Lett. 98, 164802 (2007) M. Leontovich, Izv. Akad. Nauk Arm. SSR, Fiz. 8, 16 (1994) M. Murklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006) S.H. Glenzer, G. Gregori, R.W. Lee, F.J. Rogers, S.W. Pollaine, O.L. Landen, Phys. Rev. Lett. 90, 175002 (2003) S.H. Glenzer, R. Redmer, Rev. Mod. Phys. 81, 1625 (2009) G. Manfredi, Fields Inst. Commun. 46, 263 (2005) C.L. Gardner, C. Ringhofer, Phys. Rev. E 53, 157 (1996) G. Manfredi, F. Haas, Phys. Rev. B 64, 075316 (2001) F. Haas, Phys. Plasmas 12, 062117 (2005) M.W. Walser, C.H. Keitel, J. Phys. B 33, L221 (2000) Z. Qian, G. Vignale, Phys. Rev. Lett. 88, 056404 (2002) R.L. Liboff, Europhys. Lett. 68, 577 (2004) L. Brey, J. Dempsey, N.F. Johnson, B. Halperin, Phys. Rev. B 42, 1240 (1990) G. Manfredi, F. Haas, Phys. Rev. B 64, 075316 (2001) N. Crouseilles, P.A. Hervieux, G. Manfredi, Phys. Rev. B 78, 155412 (2008) G. Brodin, A.P. Misra, M. Marklund, Phys. Rev. Lett. 105, 105004 (2010) P.K. Shukla, B. Eliasson, Phys. Rev. Lett. 108, 165007 (2012) P.K. Shukla, Nat. Phys. 5, 92 (2009) M. Marklund, G. Brodin, Phys. Rev. Lett. 98, 025001 (2007) G. Brodin, M. Marklund, New J. Phys. 9, 277 (2007) G. Brodin, M. Marklund, Phys. Rev. E 76, 055403(R) (2007) M. Marklund, B. Eliasson, P.K. Shukla, Phys. Rev. E 76, 067401 (2007) A.P. Misra, N.K. Ghosh, Phys. Lett. A 372, 6412 (2008) A. Mushtaq, S.V. Vladimirov, Eur. Phys. J. D 64, 419 (2011) B. Sahu, S. Choudhury, A. Sinha, Phys. Plasmas 22, 022304 (2015) A.P. Misra, G. Brodin, M. Marklund, P.K. Shukla, Phys. Rev. E 82, 056406 (2010) A.P. Misra, G. Brodin, M. Marklund, P.K. Shukla, Phys. Plasmas 17, 122306 (2010) L. Hedin, B.I. Lundqvist, J. Phys. C: Solid State Phys. 4, 2064 (1971) P.K. Shukla, A.A. Mamun, New J. Phys. 5, 17 (2003) I. Easson, Astrophys. J. 228, 257 (1979)