Magnetohydrodynamic boundary layer flow of hybrid nanofluid with the thermophoresis and Brownian motion in an irregular channel: A numerical approach
Tài liệu tham khảo
Gurav, 2014, Stable colloidal copper nanoparticles for a nanofluid: Production and application, Colloids Surf. A: Physicochem. Eng. Aspects, 441, 589, 10.1016/j.colsurfa.2013.10.026
Choi, 1995, Enhancing thermal conductivity of a fluids with nanoparticles, ASME – Publ. – Fed., 231, 99
Das, 2007, Nanofluids – Science and Technology, Wiley Publication, 1
Reza, 2018, MHD slip flow of Cu-kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIa formula, Defect Diffus. Forum, 387, 51, 10.4028/www.scientific.net/DDF.387.51
Oudina, 2019, Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer Res., 48, 13
Alsabery, 2020, Natural convection of Al2O3-water nanofluid in a non-Darcian wavy porous cavity under the local thermal non-equilibrium condition, Sci. Rep., 10, 1
Rasheed, 2021, Effects of joule heating and viscous dissipation on magnetohydrodynamic boundary layer flow of Jeffrey nanofluid over a vertically stretching cylinder, The Coatings, 11, 353, 10.3390/coatings11030353
Kole, 2013, Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids, Appl. Therm. Eng., 50, 763, 10.1016/j.applthermaleng.2012.06.049
Sakiadis, 1961, Boundary layer behavior on continuous solid surfaces: II the boundary layer on a continuous flat surface, AIChE J., 7, 221, 10.1002/aic.690070211
Bachok, 2010, Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet, Phys. Lett. A, 374, 4075, 10.1016/j.physleta.2010.08.032
Giresha, 2017, Boundary layer flow of dusty fluid over a radiating stretching surface embedded in a thermally stratified porous medium in the presence of uniform heat source, Nonlinear Eng., 6, 31, 10.1515/nleng-2016-0058
R.B. Kudenatti, L. Sandhya, N.M. Bujurke, Numerical solution of shear-thinning and shear-thickening boundary-layer flow for Carreau fluid over a moving wedge, Eng. Comput. doi: 10.1007/s00366-020-01164-y
Salleh, 2019, Numerical analysis of boundary layer flow adjacent to a thin needle in nanofluid with the presence of heat source and chemical reaction, Symmetry, 11, 543, 10.3390/sym11040543
Ibrahim, 2019, Magnetohydrodynamic (MHD) boundary layer flow past a wedge with heat transfer and viscous effects of nanofluid embedded in porous media, Math. Probl. Eng., 1, 10.1155/2019/4507852
Yao, 1983, Natural convection along a vertical wavy surface, J. Heat Transfer, 105, 465, 10.1115/1.3245608
Tanda, 1996, Fluid flow and heat transfer in a two-dimensional wavy channel, Heat Mass Transfer, 31, 411, 10.1007/BF02172588
Jang, 2003, Natural convection heat and mass transfer along a vertical wavy surface, Int. J. Heat Mass Transfer, 46, 1075, 10.1016/S0017-9310(02)00361-7
Okechi, 2020, Magnetohydrodynamic flow through a wavy curved channel, AIP Adv., 10, 10.1063/1.5142214
Bahiraei, 2017, Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger, Appl. Therm. Eng., 125, 1083, 10.1016/j.applthermaleng.2017.07.100
Benkhedda, 2019, Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect, J. Therm. Anal. Calorim., 140, 411, 10.1007/s10973-019-08836-y
S. Dinarvand, M.N. Rostami, I. Pop, A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner, Sci. Rep. 9 (1) (2019) Article No. 16290. doi: 10.1038/s41598-019-52720-6
A.J. Chamkha, A.S. Dogonchi, D.D. Ganji, Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating, AIP Adv. 9 (2019) Article No. 025103. doi: 10.1063/1.5086247
M. Hassan, A. Faisal, I. Ali, M.M. Bhatt, M. Yousaf, Effects of Cu-Ag hybrid nanoparticles on the momentum and thermal boundary layer flow over the wedge, Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. 233 (5) (2019) 1128–1136. doi: 10.1177/0954408919844668
A. Naseri, M. Jamei, I. Ahmadianfar, M. Bhbahani, Nanofluids thermal conductivity prediction applying a novel hybrid data-driven model validated using Monte Carlo-based sensitivity analysis, Eng. Comput. doi: 10.1007/s00366-020-01163-z
Symanski, 2012, Development of copper based drugs, radiopharmaceuticals and medical materials, Biometals, 25, 1089, 10.1007/s10534-012-9578-y
Ahmed, 2017, Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with six types of stenosis, Results Phys., 7, 4130, 10.1016/j.rinp.2017.10.032
Saba, 2019, A novel coupling of (CNTFe3O4/H2O) hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls, Int. J. Heat Mass Transfer, 136, 186, 10.1016/j.ijheatmasstransfer.2019.02.097
Arshad, 2017, Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid, Int. J. Heat Mass Transfer, 110, 248?256, 10.1016/j.ijheatmasstransfer.2017.03.032
Batmunkh, 2014, Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle, Ind. Eng. Chem. Res., 53, 8445?8451, 10.1021/ie403712f
Benkhedda, 2018, Laminar mixed convective heat transfer enhancement by using Ag-TiO2- water hybrid nanofluid in a heated horizontal annulus, Heat Mass Transfer, 54, 2799, 10.1007/s00231-018-2302-x
Buongiorno, 2006, Convective transport in nanofluids, J. Heat Transfer, 128, 240, 10.1115/1.2150834
R.G. Abdel-Rahman, MHD slip flow of Newtonian fluid past a stretching sheet with thermal convective boundary condition, radiation, and chemical reaction, Math. Probl. Eng. 2013 (2013) Article ID 359817. doi: 10.1155/2013/359817.
Brinkman, 1952, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571, 10.1063/1.1700493
Nabil, 2017, An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water:ethylene glycol mixture, Int. Commun. Heat Mass Transfer, 86, 181, 10.1016/j.icheatmasstransfer.2017.05.024
Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5
H. Schlichting, K. Gersten, Boundary layer theory, Springer 8th Revised and Enlarged Edision
Fang, 2009, Slip MHD viscous flow over a stretching sheet – an exact solution, Commun. Nonlinear Sci. Numer. Simul., 14, 3731, 10.1016/j.cnsns.2009.02.012
Kudenatti, 2019, Similarity solutions of the unsteady boundary layer flow past a permeable wedge embedded in a porous medium, J. Porous Media, 22, 745, 10.1615/JPorMedia.2019029063
Kudenatti, 2020, Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach, Sci. Rep., 10, 9445, 10.1038/s41598-020-66106-6
B. Mahanthesh, K. Thriveni, Effects of aggregation on TiO2-ethylene glycol nanoliquid over an inclined cylinder with exponential space-based heat source: sensitivity analysis, J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10516-1
G. Kalpana, K. Madhur, B.K. Ramesh, Impact of temperature-dependant viscosity and thermal conductivity on MHD boundary layer flow of two-phase dusty fluid through permeable medium, Eng. Sci. Technol., Int. J. 22 (2) (2019) 416–427. doi: 10.1016/j.jestch.2018.10.009
Devi, 2017, Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet, J. Niger. Math. Soc., 36, 419
L. Colla, L. Fedele, M. Scattolini, S. Bobbo, Water-based Fe2O3 nanofluid characterization: thermal conductivity and viscosity measurements and correlation, Adv. Mech. Eng. Article ID 674947. doi: 10.1155/2012/674947