Magnetohydrodynamic boundary layer flow of hybrid nanofluid with the thermophoresis and Brownian motion in an irregular channel: A numerical approach

G. Kalpana1, K.R. Madhura2,3, Ramesh B. Kudenatti4
1Department of Mathematics, Mount Carmel College, Bengaluru, 560 052 Karnataka, India
2Post Graduate Department of Mathematics, The National College, Jayanagar, Bengaluru, 560 070 Karnataka, India
3Trans – Disciplinary Research Centre, National Degree College, Basavanagudi and The Florida International University, USA
4Department of Mathematics, Bengaluru City University, Central College Campus, Bengaluru, 560 001 Karnataka, India

Tài liệu tham khảo

Gurav, 2014, Stable colloidal copper nanoparticles for a nanofluid: Production and application, Colloids Surf. A: Physicochem. Eng. Aspects, 441, 589, 10.1016/j.colsurfa.2013.10.026 Choi, 1995, Enhancing thermal conductivity of a fluids with nanoparticles, ASME – Publ. – Fed., 231, 99 Das, 2007, Nanofluids – Science and Technology, Wiley Publication, 1 Reza, 2018, MHD slip flow of Cu-kerosene nanofluid in a channel with stretching walls using 3-stage Lobatto IIIa formula, Defect Diffus. Forum, 387, 51, 10.4028/www.scientific.net/DDF.387.51 Oudina, 2019, Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer Res., 48, 13 Alsabery, 2020, Natural convection of Al2O3-water nanofluid in a non-Darcian wavy porous cavity under the local thermal non-equilibrium condition, Sci. Rep., 10, 1 Rasheed, 2021, Effects of joule heating and viscous dissipation on magnetohydrodynamic boundary layer flow of Jeffrey nanofluid over a vertically stretching cylinder, The Coatings, 11, 353, 10.3390/coatings11030353 Kole, 2013, Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids, Appl. Therm. Eng., 50, 763, 10.1016/j.applthermaleng.2012.06.049 Sakiadis, 1961, Boundary layer behavior on continuous solid surfaces: II the boundary layer on a continuous flat surface, AIChE J., 7, 221, 10.1002/aic.690070211 Bachok, 2010, Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet, Phys. Lett. A, 374, 4075, 10.1016/j.physleta.2010.08.032 Giresha, 2017, Boundary layer flow of dusty fluid over a radiating stretching surface embedded in a thermally stratified porous medium in the presence of uniform heat source, Nonlinear Eng., 6, 31, 10.1515/nleng-2016-0058 R.B. Kudenatti, L. Sandhya, N.M. Bujurke, Numerical solution of shear-thinning and shear-thickening boundary-layer flow for Carreau fluid over a moving wedge, Eng. Comput. doi: 10.1007/s00366-020-01164-y Salleh, 2019, Numerical analysis of boundary layer flow adjacent to a thin needle in nanofluid with the presence of heat source and chemical reaction, Symmetry, 11, 543, 10.3390/sym11040543 Ibrahim, 2019, Magnetohydrodynamic (MHD) boundary layer flow past a wedge with heat transfer and viscous effects of nanofluid embedded in porous media, Math. Probl. Eng., 1, 10.1155/2019/4507852 Yao, 1983, Natural convection along a vertical wavy surface, J. Heat Transfer, 105, 465, 10.1115/1.3245608 Tanda, 1996, Fluid flow and heat transfer in a two-dimensional wavy channel, Heat Mass Transfer, 31, 411, 10.1007/BF02172588 Jang, 2003, Natural convection heat and mass transfer along a vertical wavy surface, Int. J. Heat Mass Transfer, 46, 1075, 10.1016/S0017-9310(02)00361-7 Okechi, 2020, Magnetohydrodynamic flow through a wavy curved channel, AIP Adv., 10, 10.1063/1.5142214 Bahiraei, 2017, Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger, Appl. Therm. Eng., 125, 1083, 10.1016/j.applthermaleng.2017.07.100 Benkhedda, 2019, Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect, J. Therm. Anal. Calorim., 140, 411, 10.1007/s10973-019-08836-y S. Dinarvand, M.N. Rostami, I. Pop, A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner, Sci. Rep. 9 (1) (2019) Article No. 16290. doi: 10.1038/s41598-019-52720-6 A.J. Chamkha, A.S. Dogonchi, D.D. Ganji, Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating, AIP Adv. 9 (2019) Article No. 025103. doi: 10.1063/1.5086247 M. Hassan, A. Faisal, I. Ali, M.M. Bhatt, M. Yousaf, Effects of Cu-Ag hybrid nanoparticles on the momentum and thermal boundary layer flow over the wedge, Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. 233 (5) (2019) 1128–1136. doi: 10.1177/0954408919844668 A. Naseri, M. Jamei, I. Ahmadianfar, M. Bhbahani, Nanofluids thermal conductivity prediction applying a novel hybrid data-driven model validated using Monte Carlo-based sensitivity analysis, Eng. Comput. doi: 10.1007/s00366-020-01163-z Symanski, 2012, Development of copper based drugs, radiopharmaceuticals and medical materials, Biometals, 25, 1089, 10.1007/s10534-012-9578-y Ahmed, 2017, Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with six types of stenosis, Results Phys., 7, 4130, 10.1016/j.rinp.2017.10.032 Saba, 2019, A novel coupling of (CNTFe3O4/H2O) hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls, Int. J. Heat Mass Transfer, 136, 186, 10.1016/j.ijheatmasstransfer.2019.02.097 Arshad, 2017, Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid, Int. J. Heat Mass Transfer, 110, 248?256, 10.1016/j.ijheatmasstransfer.2017.03.032 Batmunkh, 2014, Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle, Ind. Eng. Chem. Res., 53, 8445?8451, 10.1021/ie403712f Benkhedda, 2018, Laminar mixed convective heat transfer enhancement by using Ag-TiO2- water hybrid nanofluid in a heated horizontal annulus, Heat Mass Transfer, 54, 2799, 10.1007/s00231-018-2302-x Buongiorno, 2006, Convective transport in nanofluids, J. Heat Transfer, 128, 240, 10.1115/1.2150834 R.G. Abdel-Rahman, MHD slip flow of Newtonian fluid past a stretching sheet with thermal convective boundary condition, radiation, and chemical reaction, Math. Probl. Eng. 2013 (2013) Article ID 359817. doi: 10.1155/2013/359817. Brinkman, 1952, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571, 10.1063/1.1700493 Nabil, 2017, An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water:ethylene glycol mixture, Int. Commun. Heat Mass Transfer, 86, 181, 10.1016/j.icheatmasstransfer.2017.05.024 Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5 H. Schlichting, K. Gersten, Boundary layer theory, Springer 8th Revised and Enlarged Edision Fang, 2009, Slip MHD viscous flow over a stretching sheet – an exact solution, Commun. Nonlinear Sci. Numer. Simul., 14, 3731, 10.1016/j.cnsns.2009.02.012 Kudenatti, 2019, Similarity solutions of the unsteady boundary layer flow past a permeable wedge embedded in a porous medium, J. Porous Media, 22, 745, 10.1615/JPorMedia.2019029063 Kudenatti, 2020, Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach, Sci. Rep., 10, 9445, 10.1038/s41598-020-66106-6 B. Mahanthesh, K. Thriveni, Effects of aggregation on TiO2-ethylene glycol nanoliquid over an inclined cylinder with exponential space-based heat source: sensitivity analysis, J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-10516-1 G. Kalpana, K. Madhur, B.K. Ramesh, Impact of temperature-dependant viscosity and thermal conductivity on MHD boundary layer flow of two-phase dusty fluid through permeable medium, Eng. Sci. Technol., Int. J. 22 (2) (2019) 416–427. doi: 10.1016/j.jestch.2018.10.009 Devi, 2017, Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet, J. Niger. Math. Soc., 36, 419 L. Colla, L. Fedele, M. Scattolini, S. Bobbo, Water-based Fe2O3 nanofluid characterization: thermal conductivity and viscosity measurements and correlation, Adv. Mech. Eng. Article ID 674947. doi: 10.1155/2012/674947