Magnetocaloric Materials with Multiple Instabilities

Advanced Materials - Tập 29 Số 25 - 2017
Y. Taguchi1, Hideaki Sakai2,3, Debraj Choudhury4
1RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
2Department of Physics, Osaka University, Toyonaka 560-0043, Japan
3Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
4Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Tóm tắt

The magnetocaloric effect is a well‐known phenomenon where the temperature of a magnetic material varies upon application or removal of a magnetic field. This effect is anticipated to be applied to magnetic refrigeration technology, which is environmentally benign. For practical applications, it is essential to explore and expand the materials horizon of novel magnets that exhibit giant magnetocaloric effects to achieve sufficient cooling efficiency. In this article, several attempts to enhance the magnetocaloric effect are reviewed from the viewpoint of the competition or cooperation between the ferromagnetic interaction and other magnetic, electronic, and structural instabilities in strongly correlated materials. The results indicate that both the competition and cooperation between them promote the first‐order nature of the magnetic transition, leading to giant magnetocaloric effects. Therefore, exploiting multiple instabilities is a promising strategy for exploring new magnetocaloric materials.

Từ khóa


Tài liệu tham khảo

10.1088/0034-4885/68/6/R04

10.1016/j.jmmm.2006.07.025

10.1002/adma.200901072

10.1016/j.scriptamat.2012.02.045

10.1038/nmat3951

10.1063/PT.3.3022

10.1007/978-3-319-08741-2

10.1103/PhysRevLett.78.4494

10.1103/PhysRevLett.84.4617

10.1038/nature02657

10.1063/1.1399007

10.1063/1.1375836

10.1063/1.1498148

10.1103/PhysRevB.67.104416

10.1002/adma.201000177

10.1038/415150a

10.1063/1.3095597

10.1016/j.scriptamat.2012.08.036

10.1002/adma.201304788

10.1038/nature04493

10.1088/0953-8984/21/23/233201

10.1038/nmat3334

10.1103/PhysRevLett.90.197201

10.1088/0034-4885/69/3/R06

10.1143/JPSJ.78.113708

10.1038/srep07544

10.1103/PhysRevB.89.104427

10.1103/PhysRev.82.403

Anderson P. W., 1955, Phys. Rev., 100, 67

10.1103/PhysRev.118.141

10.1103/PhysRevB.66.104416

10.1103/PhysRevLett.90.177203

10.1016/j.jmmm.2008.03.003

10.1063/1.3399774

10.1063/1.3399773

10.1016/j.jmmm.2011.07.047

10.1063/1.4770379

10.1016/j.jmmm.2012.12.001

10.1063/1.4798339

10.1016/0304-8853(82)90087-7

10.1038/ncomms1868

10.1103/PhysRevB.54.1716

10.1103/PhysRevB.82.214423

10.1038/144327b0

10.1103/PhysRev.102.1008

10.1103/PhysRevB.55.R15979

10.1038/416155a

10.1103/PhysRevLett.78.3729

10.1103/PhysRevLett.96.086406

10.1088/0953-8984/21/43/436010

10.1016/j.jmmm.2009.09.023

10.1143/JPSJ.77.053708

10.1103/PhysRevB.86.125142

10.1103/PhysRevB.86.060414

10.1103/PhysRevB.84.235112

10.1103/PhysRevLett.95.197202

10.1103/PhysRevLett.98.127203

10.1103/PhysRevB.77.054412

10.1103/PhysRevLett.100.066404

10.1103/PhysRevB.68.060405

10.1103/PhysRevLett.93.157206

10.1103/PhysRevLett.94.156402

10.1103/PhysRevB.93.195133

10.1134/S0031918X07070022