Magnetically amplified photothermal therapies and multimodal imaging with magneto-plasmonic nanodomes
Tài liệu tham khảo
Kim, 2005, Targeted cancer nanotherapy, Mater. Today, 8, 28, 10.1016/S1369-7021(05)71034-8
Bardhan, 2011, Theranostic nanoshells: from probe design to imaging and treatment of cancer, Acc. Chem. Res., 44, 936, 10.1021/ar200023x
Jo, 2016, Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy, Theranostics, 6, 1362, 10.7150/thno.15335
Chen, 2016, Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy, Chem. Rev., 116, 2826, 10.1021/acs.chemrev.5b00148
Huang, 2006, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115, 10.1021/ja057254a
Lal, 2008, Nanoshell-enabled photothermal cancer therapy: impending clinical impact, Acc. Chem. Res., 41, 1842, 10.1021/ar800150g
Hessel, 2011, Copper selenide nanocrystals for photothermal therapy, Nano Lett., 11, 2560, 10.1021/nl201400z
Cheng, 2011, Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy, Angew. Chem. Int. Ed., 50, 7385, 10.1002/anie.201101447
Sun, 2015, Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents, Angew. Chem. Int. Ed., 54, 11526, 10.1002/anie.201506154
Zhang, 2011, Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide, Biomaterials, 32, 8555, 10.1016/j.biomaterials.2011.07.071
Liu, 2011, Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity, Angew. Chem. Int. Ed., 50, 891, 10.1002/anie.201002820
Guo, 2017, TiO2−x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy, Chem. Mater., 29, 9262, 10.1021/acs.chemmater.7b03241
Yang, 2017, Magnetic resonance imaging-guided multi-drug chemotherapy and photothermal synergistic therapy with pH and NIR-stimulation release, ACS Appl. Mater. Interfaces, 9, 22278, 10.1021/acsami.7b06105
Li Volsi, 2017, Near-infrared light responsive folate targeted gold nanorods for combined photothermal-chemotherapy of osteosarcoma, ACS Appl. Mater. Interfaces, 9, 14453, 10.1021/acsami.7b03711
Cole, 2009, Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications, J. Phys. Chem. C, 113, 12090, 10.1021/jp9003592
Huang, 2010, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13, 10.1016/j.jare.2010.02.002
Weissleder, 2001, A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316, 10.1038/86684
Nichols, 2012, Odyssey of a cancer nanoparticle: from injection site to site of action, Nano Today, 7, 606, 10.1016/j.nantod.2012.10.010
Schrittwieser, 2016, Homogeneous protein analysis by magnetic core–shell nanorod probes, ACS Appl. Mater. Interfaces, 8, 8893, 10.1021/acsami.5b11925
Ximendes, 2016, Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers, Nano Lett., 16, 1695, 10.1021/acs.nanolett.5b04611
Armelles, 2009, Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties, J. Opt. A: Pure Appl. Opt., 11, 114023, 10.1088/1464-4258/11/11/114023
Donolato, 2015, Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics, Anal. Chem., 87, 1622, 10.1021/ac503191v
Peters, 2014, Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications, Adv. Funct. Mater., 24, 5269, 10.1002/adfm.201400596
Chen, 2017, Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery, Adv. Mater., 29
González-Díaz, 2008, Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity, Small, 4, 202, 10.1002/smll.200700594
Sepúlveda, 2010, Plasmon-induced magneto-optical activity in nanosized gold disks, Phys. Rev. Lett., 104, 147401, 10.1103/PhysRevLett.104.147401
Armelles, 2013, Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities, Adv. Opt. Mater., 1, 10, 10.1002/adom.201200011
Espinosa, 2015, Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?, Nanoscale, 7, 18872, 10.1039/C5NR06168G
Abdulla-Al-Mamun, 2013, Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing, RSC Adv., 3, 7816, 10.1039/c3ra21479f
Urries, 2014, Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications, Nanoscale, 6, 9230, 10.1039/C4NR01588F
Xu, 2007, Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, J. Am. Chem. Soc., 129, 8698, 10.1021/ja073057v
Dong, 2011, Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy, Adv. Mater., 23, 5392, 10.1002/adma.201103521
Fantechi, 2017, Seeded growth synthesis of Au–Fe3O4 heterostructured nanocrystals: rational design and mechanistic insights, Chem. Mater., 29, 4022, 10.1021/acs.chemmater.7b00608
Hanarp, 2003, Control of nanoparticle film structure for colloidal lithography, Colloid Surf. A, 214, 23, 10.1016/S0927-7757(02)00367-9
Martín, 2003, Ordered magnetic nanostructures: fabrication and properties, J. Magn. Magn. Mater., 256, 449, 10.1016/S0304-8853(02)00898-3
Chung, 2010, Phase diagram of magnetic nanodisks measured by scanning electron microscopy with polarization analysis, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 024410, 10.1103/PhysRevB.81.024410
Roper, 2007, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles, J. Phys. Chem. C, 3636, 10.1021/jp064341w
Uba, 2003, Determination of the interfacial magneto-optical properties in sputtered Fe/Au multilayer structures, Phys. Stat. Sol. A, 196, 145, 10.1002/pssa.200306428
Regatos, 2010, Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing, J. Appl. Phys., 108, 054502, 10.1063/1.3475711
Rohrer, 2005, Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths, Invest. Radiol., 40, 715, 10.1097/01.rli.0000184756.66360.d3
Huo, 2014, Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry, ACS Nano, 8, 5852, 10.1021/nn5008572
Beik, 2016, Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications, J. Control. Release, 235, 205, 10.1016/j.jconrel.2016.05.062
Paino, 2012, Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells, Toxicol. Lett., 215, 119, 10.1016/j.toxlet.2012.09.025
Penon, 2015, A new porphyrin for the preparation of functionalized water-soluble gold nanoparticles with low intrinsic toxicity, ChemistryOpen, 4, 127, 10.1002/open.201402092
Espinosa, 2016, Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment, ACS Nano, 10, 2436, 10.1021/acsnano.5b07249
Li, 2018, Simultaneous local heating/thermometry based on plasmonic magnetochromic nanoheaters, Small, 14, 1800868, 10.1002/smll.201800868