Magnetically amplified photothermal therapies and multimodal imaging with magneto-plasmonic nanodomes

Applied Materials Today - Tập 12 - Trang 430-440 - 2018
Zhi Li1,2, Antonio Aranda-Ramos3, Pau Güell-Grau1, José Luis Tajada1, Laia Pou-Macayo3, Silvia Lope Piedrafita4,5, Francesc Pi2, Alejandro G. Roca1, María Dolors Baró2, Jordi Sort2,6, Carme Nogués3, Josep Nogués1,6, Borja Sepúlveda1
1Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
2Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
3Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
4Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
5Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
6ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain

Tài liệu tham khảo

Kim, 2005, Targeted cancer nanotherapy, Mater. Today, 8, 28, 10.1016/S1369-7021(05)71034-8 Bardhan, 2011, Theranostic nanoshells: from probe design to imaging and treatment of cancer, Acc. Chem. Res., 44, 936, 10.1021/ar200023x Jo, 2016, Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy, Theranostics, 6, 1362, 10.7150/thno.15335 Chen, 2016, Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy, Chem. Rev., 116, 2826, 10.1021/acs.chemrev.5b00148 Huang, 2006, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115, 10.1021/ja057254a Lal, 2008, Nanoshell-enabled photothermal cancer therapy: impending clinical impact, Acc. Chem. Res., 41, 1842, 10.1021/ar800150g Hessel, 2011, Copper selenide nanocrystals for photothermal therapy, Nano Lett., 11, 2560, 10.1021/nl201400z Cheng, 2011, Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy, Angew. Chem. Int. Ed., 50, 7385, 10.1002/anie.201101447 Sun, 2015, Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents, Angew. Chem. Int. Ed., 54, 11526, 10.1002/anie.201506154 Zhang, 2011, Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide, Biomaterials, 32, 8555, 10.1016/j.biomaterials.2011.07.071 Liu, 2011, Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity, Angew. Chem. Int. Ed., 50, 891, 10.1002/anie.201002820 Guo, 2017, TiO2−x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy, Chem. Mater., 29, 9262, 10.1021/acs.chemmater.7b03241 Yang, 2017, Magnetic resonance imaging-guided multi-drug chemotherapy and photothermal synergistic therapy with pH and NIR-stimulation release, ACS Appl. Mater. Interfaces, 9, 22278, 10.1021/acsami.7b06105 Li Volsi, 2017, Near-infrared light responsive folate targeted gold nanorods for combined photothermal-chemotherapy of osteosarcoma, ACS Appl. Mater. Interfaces, 9, 14453, 10.1021/acsami.7b03711 Cole, 2009, Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications, J. Phys. Chem. C, 113, 12090, 10.1021/jp9003592 Huang, 2010, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13, 10.1016/j.jare.2010.02.002 Weissleder, 2001, A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316, 10.1038/86684 Nichols, 2012, Odyssey of a cancer nanoparticle: from injection site to site of action, Nano Today, 7, 606, 10.1016/j.nantod.2012.10.010 Schrittwieser, 2016, Homogeneous protein analysis by magnetic core–shell nanorod probes, ACS Appl. Mater. Interfaces, 8, 8893, 10.1021/acsami.5b11925 Ximendes, 2016, Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers, Nano Lett., 16, 1695, 10.1021/acs.nanolett.5b04611 Armelles, 2009, Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties, J. Opt. A: Pure Appl. Opt., 11, 114023, 10.1088/1464-4258/11/11/114023 Donolato, 2015, Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics, Anal. Chem., 87, 1622, 10.1021/ac503191v Peters, 2014, Superparamagnetic twist-type actuators with shape-independent magnetic properties and surface functionalization for advanced biomedical applications, Adv. Funct. Mater., 24, 5269, 10.1002/adfm.201400596 Chen, 2017, Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery, Adv. Mater., 29 González-Díaz, 2008, Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity, Small, 4, 202, 10.1002/smll.200700594 Sepúlveda, 2010, Plasmon-induced magneto-optical activity in nanosized gold disks, Phys. Rev. Lett., 104, 147401, 10.1103/PhysRevLett.104.147401 Armelles, 2013, Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities, Adv. Opt. Mater., 1, 10, 10.1002/adom.201200011 Espinosa, 2015, Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?, Nanoscale, 7, 18872, 10.1039/C5NR06168G Abdulla-Al-Mamun, 2013, Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing, RSC Adv., 3, 7816, 10.1039/c3ra21479f Urries, 2014, Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications, Nanoscale, 6, 9230, 10.1039/C4NR01588F Xu, 2007, Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, J. Am. Chem. Soc., 129, 8698, 10.1021/ja073057v Dong, 2011, Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy, Adv. Mater., 23, 5392, 10.1002/adma.201103521 Fantechi, 2017, Seeded growth synthesis of Au–Fe3O4 heterostructured nanocrystals: rational design and mechanistic insights, Chem. Mater., 29, 4022, 10.1021/acs.chemmater.7b00608 Hanarp, 2003, Control of nanoparticle film structure for colloidal lithography, Colloid Surf. A, 214, 23, 10.1016/S0927-7757(02)00367-9 Martín, 2003, Ordered magnetic nanostructures: fabrication and properties, J. Magn. Magn. Mater., 256, 449, 10.1016/S0304-8853(02)00898-3 Chung, 2010, Phase diagram of magnetic nanodisks measured by scanning electron microscopy with polarization analysis, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 024410, 10.1103/PhysRevB.81.024410 Roper, 2007, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles, J. Phys. Chem. C, 3636, 10.1021/jp064341w Uba, 2003, Determination of the interfacial magneto-optical properties in sputtered Fe/Au multilayer structures, Phys. Stat. Sol. A, 196, 145, 10.1002/pssa.200306428 Regatos, 2010, Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing, J. Appl. Phys., 108, 054502, 10.1063/1.3475711 Rohrer, 2005, Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths, Invest. Radiol., 40, 715, 10.1097/01.rli.0000184756.66360.d3 Huo, 2014, Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry, ACS Nano, 8, 5852, 10.1021/nn5008572 Beik, 2016, Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications, J. Control. Release, 235, 205, 10.1016/j.jconrel.2016.05.062 Paino, 2012, Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells, Toxicol. Lett., 215, 119, 10.1016/j.toxlet.2012.09.025 Penon, 2015, A new porphyrin for the preparation of functionalized water-soluble gold nanoparticles with low intrinsic toxicity, ChemistryOpen, 4, 127, 10.1002/open.201402092 Espinosa, 2016, Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment, ACS Nano, 10, 2436, 10.1021/acsnano.5b07249 Li, 2018, Simultaneous local heating/thermometry based on plasmonic magnetochromic nanoheaters, Small, 14, 1800868, 10.1002/smll.201800868