Magnetic resonance tomography constrained by ground-penetrating radar for improved hydrogeophysical characterization

Geophysics - Tập 85 Số 6 - Trang JM13-JM26 - 2020
Chuandong Jiang1, Jan Igel2, Raphael Dlugosch2, Mike Müller‐Petke2, Thomas Günther2, Julian Helms3, Jörg Lang3, Jutta Winsemann3
1Leibniz-Institute for Applied Geophysics, Stilleweg 2, Hannover 30655, Germany and Jilin University, College of Instrumentation and Electrical Engineering, Ximinzhu 938, Changchun 130061, China..
2Leibniz-Institute for Applied Geophysics, Stilleweg 2, Hannover 30655, Germany.(corresponding author); .
3Leibniz Universität Hannover, Institute for Geology, Callinstr 30, Hannover 30167, Germany..

Tóm tắt

Geophysical methods can characterize aquifer systems noninvasively and are particularly helpful to image the complex depositional architecture of the subsurface. Among these, ground-penetrating radar (GPR) is an effective tool for detailed investigations of shallow subsurface geometry, but it provides only limited information on hydraulic properties. Magnetic resonance tomography (MRT) provides parameters such as water content (porosity) and relaxation time/hydraulic conductivity, but it suffers from resolution limits. Furthermore, it requires knowledge of subsurface electrical resistivity, which can be obtained by electrical resistivity tomography (ERT) also suffering from resolution limits. To overcome the limitations in resolution, we have incorporated GPR reflectors as structural information into the ERT and MRT data inversion. We test the methodology on a synthetic example and find improved imaging properties compared to standard inversion, particularly at greater depths, where the resolution is limited. We apply the methodology to a test site that is characterized by a complex depositional architecture. The Quaternary deposits consist of interbedded meltwater deposits (aquifers) and till (aquitards), overlain by aeolian deposits. To image the subsurface depositional architecture in three dimensions, a [Formula: see text] area was surveyed by GPR. The use of GPR constraints clearly improves the resolution and zonation of the subsurface image, which is validated by drill-core analyses. We develop a workflow to combine GPR, MRT, and ERT, leading the way to high-resolution hydrogeologic models that can be used for groundwater studies.

Từ khóa


Tài liệu tham khảo

Annan, A. P., 2006, Ground-penetrating radar, in D. K. Butler, ed. Near-surface geophysics, volume 1: Concepts and fundamentals: SEG, 3, 31–88.

10.5194/hess-17-4079-2013

10.1007/s10712-014-9304-0

10.1190/geo2013-0131.1

10.1002/2015WR017016

10.3997/1873-0604.2010056

10.2136/vzj2006.0160

10.1016/j.pgeola.2010.03.001

10.2113/JEEG16.3.95

Bristow C. S., 2003, Ground penetrating radar in sediments (Geological Society Special Publication) (no. 211)

10.1016/S0169-7722(03)00142-6

10.1002/2016WR019141

10.1190/1.2194527

10.1190/1.3553003

10.1190/1.3552688

10.1002/wrcr.20207

10.2136/vzj2014.06.0069

Dlugosch, R., 2014, Aquifer characterisation using nuclear magnetic resonance: Ph.D. thesis, Berlin University of Technology.

10.1190/geo2012-0187.1

10.3997/1873-0604.2013062

10.3997/1873-0604.2010063

10.1016/j.jappgeo.2011.04.008

10.1016/j.earscirev.2006.04.001

10.1002/hyp.13260

10.1190/1.1443996

10.1190/geo2016-0567.1

10.3997/1873-0604.2010062

10.1111/j.1365-246X.2006.03011.x

10.1016/j.pnmrs.2008.01.002

10.1109/TGRS.2007.903829

10.1093/gji/ggaa216

10.2136/vzj2003.4760

10.5194/hess-17-519-2013

10.1016/j.jappgeo.2015.02.008

10.1093/gji/ggu434

10.1190/geo2017-0756.1

Jol H., 2009, Ground penetrating radar theory and applications

Jordan, H., 1975, Erläuterungen zur Geologischen Karte von Niedersachsen 1:25 000, Blatt 3525 Großburgwedel.

10.1093/gji/ggz550

10.1016/j.jappgeo.2020.104096

10.2136/vzj2018.03.0052

10.3997/1873-0604.2010054

10.1029/2011GL050167

10.1016/j.advwatres.2017.11.013

10.1016/j.quascirev.2017.11.029

10.1016/j.sedgeo.2017.10.011

10.1006/jmre.1997.1161

10.1093/gji/ggx490

10.1029/2006WR005131

10.1111/j.1745-6584.2004.tb02675.x

10.1111/bor.12021

10.1029/2018WR023624

10.1190/1.3471523

10.1190/geo2015-0461.1

10.1016/B978-0-444-53802-4.00206-2

10.2113/JEEG23.3.349

10.1111/bor.12083

Rubin Y., 2006, Hydrogeophysics, 50

10.1109/JSTARS.2011.2171920

10.1190/geo2019-0484.1

10.5194/hess-16-3621-2012

10.1029/WR016i003p00574

10.1029/2003WR002031

10.1016/j.geomorph.2010.09.005

10.5194/hess-16-4387-2012

10.1093/gji/ggz402

10.1190/1.3238366

10.3997/1873-0604.2010073

10.3997/1873-0604.2013066

10.1103/PhysRevE.62.1290

10.1111/bor.12317

10.1016/j.quascirev.2015.06.005